• Title/Summary/Keyword: Potassium ion

Search Result 314, Processing Time 0.022 seconds

Protective Effects of Potassium Ion on Rotenone-Induced Apoptosis in Neuronal (Neuro 2A) Cells

  • Park, Ji-Hwan;Kim, Yun-Ha;Moon, Seong-Keun;Kim, Tae-Young;Kim, Jong-Moon
    • Journal of Korean Neurosurgical Society
    • /
    • v.38 no.6
    • /
    • pp.456-464
    • /
    • 2005
  • Objective : The authors investigated whether rotenone induces cellular death also in non-dopaminergic neurons and high concentration of potassium ion can show protective effect for non-dopaminergic neuron in case of rotenone-induced cytotoxicity. Methods : Neuro 2A cells was treated with rotenone, and their survival as well as cell death mechanism was estimated using 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium[MTT] assay, Lactate dehydrogenase[LDH] release assay, fluorescence microscopy, and agarose gel electrophoresis. The changes in rotenone-treated cells was also studied after co-treatment of 50mM KCl. And the protective effect of KCl was evaluated by mitochondrial membrane potential assay and compared with the effects of various antioxidants. Results : Neuro 2A cells treated with rotenone underwent apoptotic death showing chromosome condensation and fragmentation as well as DNA laddering. Co-incubation of neuro 2A cells with 50mM KCl prevented it from the cytotoxicity induced by rotenone. Intracellular accumulation of reactive oxygen species[ROS] resulting by rotenone were significantly reduced by 50mM KCl. Potassium exhibited significantly similar potency compared to the antioxidants. Conclusion : The present findings showed that potassium attenuated rotenone-induced cytotoxicity, intracellular accumulation of ROS, and fragmentation of DNA in Neuro 2A cells. These findings suggest the therapeutic potential of potassium ion in neuronal apoptosis, but the practical application of high concentration of potassium ion remains to be settled.

An Experimental Study of Lactic Acidosis and Potassium Transfer in the Dog (락트산 산증과 칼륨이동에 관한 실험적 연구)

  • Park, Choo-Chul;Lee, Yung-Kyoon
    • Journal of Chest Surgery
    • /
    • v.12 no.4
    • /
    • pp.395-402
    • /
    • 1979
  • Intracellular pH was determined by distribution of 5.5-dimethyl-2,4-oxazolidlnedione [DMO]in the skeletal muscle of dogs before and after lactic acidosis induced by intravenous infusion of lactic acid solution. After infusion of lactic acid solution arterial pH decreased from 7.40 to around 7.12 [P<0.001]and metabolic acidosis was induced. However, dose-pH change response was not proportional as in the case of hydrochloric acid infusion. During lactic acidosis, intracellular pH changed very little except when venous blood $pCO_2$ increased significantly. The decrease of intracellular pH in lactic acidosis might be due primarily to the increase of intracellular $pCO_2$. And during lactic acidosis, change of extracellular pH was larger than that of intracellular pH, and this was also the case of change In hydrogen Ion concentration in extracellular and intracellular fluid. The fact was estimated that exogenous lactic acid transported into the cell does not contribute to pH change by the participation in the metabolism. Change in plasma potassium Ion concentration was not eminent as metabolic acid-base disturbances by other origin, and changing pattern of Hi/He ratio was not same as Ki/Ke ratio. In spite of no changes in extracellular potassium ion concentration after exogenous lactic acidosis total amount of potassium ion in extracellular fluid increased from 12.62mEg to 18.26mEg [P< 0.05].

  • PDF

Durability of Hydrophilic Alkali Silicate Impregnant of Concrete Structure (알칼리 실리케이트계 침투성 콘크리트 표면보호재의 내구특성)

  • Song, Hun;Lee, Jong-Kyu;Chu, Yong-Sik;Kim, Young-Yup
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.91-94
    • /
    • 2007
  • It is essential every concrete structure should continue to perform its intended functions, that is maintain its required strength and durability, during the service life. However, deterioration occurs more progressively from the outside of concrete exposed to severe conditions. Deterioration in the concrete structure is due to carbonation and chloride ion attack. Therefore, concrete structure is needed to surface protection for increase durability using impregnant. Impregnant classify into two large groups in polymeric and silicate materials. Silicate impregnant is included silane and alkali silicate(sodium and lithium silicate). Thus, this study is concerned with carbonation and chloride ion resistance of self cleaning hydrophilic impregnant of concrete structure using lithium and potassium silicate. From the experimental test result, lithium and potassium silicate have a good properties as a carbonation and chloride ion resistance. Lithium and potassium silicate make good use of hydrophilic impregnant.

  • PDF

Field-effect Ion-transport Devices with Carbon Nanotube Channels: Schematics and Simulations

  • Kwon Oh Kuen;Kwon Jun Sik;Hwang Ho Jung;Kang Jeong Won
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.787-791
    • /
    • 2004
  • We investigated field-effect ion-transport devices based on carbon nanotubes by using classical molecular dynamics simulations under applied external force fields, and we present model schematics that car be applied to the nanoscale data storage devices and unipolar ionic field-effect transistors. As the applied external force field is increased, potassium ions rapidly flow through the nanochannel. Under low external force fields, ther nal fluctuations of the nanochannels affect tunneling of the potassium ions whereas the effects of thermal fluctuations are negligible under high external force fields. Since the electric current conductivity increases when potassium ions are inserted into fullerenes or carbon nanotubes, the field effect due to the gate, which can modify the position of the potassium ions, changes the tunneling current between the drain and the source.

  • PDF

DFT Study for p-tert-Butylcalix[4]arene Crown Ether Bridged at the Lower Rim with Pyridyl Unit Complexed with Potassium Ion

  • Choe, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2310-2314
    • /
    • 2007
  • Stable molecular conformations were calculated for the p-tert-butylcalix[4]arene crown ether bridged at the lower rim with pyridyl unit (1) in the various conformers and their potassium-ion complexes. The structures of three distinct conformations have been optimized using DFT B3LYP/6-31G(d,p) method. Relative stability of free host 1 is in following order: cone (most stable) > partial-cone > 1,3-alternate conformer. For two different kinds of complexation mode, the potassium cation in the crown-ether moiety (cr) has much better complexation efficiency than in the benzene-rings (bz) pocket for all three kinds of conformation of host molecule 1. The relative stability of complex (1+K+) in the cr-binding mode is in following order: partial-cone (most stable) ~ cone > 1,3-alternate conformer.

DFT Study for Cage-annulated p-tert-Butylcalix[4]crown-ether Complexed with Potassium Ion

  • Kim, Kwang-Ho;Park, Seong-Jun;Choe, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.7
    • /
    • pp.1374-1378
    • /
    • 2008
  • Using DFT B3LYP/6-31+G(d,p)//B3LYP/6-31G(d,p) calculation method, stable molecular structures were optimized for the p-tert-butylcalix[4]arene functionalized at lower rim by cage-annulated crown ether (1) in two different conformers and their potassium-ion complexes. Cone conformer of free host 1 was slightly more stable than partial-cone conformer. For two different kinds of complexation mode, the potassium ion in benzene-rings (bz) pocket showed comparable complexation efficiency with the cation in cage-annulated crown-ether (cr) for the cone and partial-cone conformers of 1. The complex (1${\bullet}K^+$) in the cr-binding mode for the partial-cone conformer was more stable than the cone conformer for B3LYP/6-31G(d,p) geometry optimization. However, $1_{(cone)}{\bullet}K^+$(cr) showed lower single-point energy than the $1_{(pc)}{\bullet}K^+$(cr) for B3LYP/6- 31+G(d,p) calculation method.

AN EXPERIMENTAL STUDY OF THE EFFECT OF ION EXCHANGE ON STRENGTHENING OF DENTAL PORCELAIN (이온교환법에 의한 치과용도재의 강도증진 효과에 관한 실험적 연구)

  • Lee Young-Kook;Lee Sun-Hyung;Yang Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.3
    • /
    • pp.75-86
    • /
    • 1991
  • Ion exchange strengthening is a chemical process whereby large alkali ions(such as potassium) are substituted for smaller ions(sodium) within the surfaces of glasses and ceramics, thereby reducing the thermal expansion coefficient of this surface region, and creating beneficial state of compressive stress within the near surface region. The purpose of this study was to determine the effects of ion exchange and etching treatments on the strength of some dental porcelains. Two feldspathic dental porcelains(Vitadur-N, G-Cera) were used in this study. A commercial ion exchange paste and etching gel containing 8% hydrofluoric acid were used for surface conditioning. Transverse strength was measured using a universal testing machine and the technique of EPMA(electron probe micro analysis) was used to access the potassium contents. The results were as follows: 1. Improvement in strength was only obtained by treating the surface placed in tension. 2. No changes in the dimensions of the treated specimens were detected when samples were measured with a micrometer. 3. There was significant increase in transverse strength of G-Cera IV group treated with etching and ion exchange, compared with G-Cera II group only treated with ion exchange. 4. From the results of EPMA test, increase in potassium contents was observed on the surface treated with ion exchange paste.

  • PDF

Ab Initio Study of Complexation of Alkali Metal Ions with Alkyl Esters of p-tert-Butylcalix[4]arene

  • Choe, Jong-In;Oh, Dong-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.847-851
    • /
    • 2004
  • The complexation characteristics of tetramethyl (1) and tetraethyl esters (2) of p-tert-butylcalix[4]arene with alkali metal cations have been investigated by ab initio calculation. The structures of endo- or exocomplexation of the hosts in cone conformation with alkali metal ions have been optimized using HF/6-31G method followed by B3LYP/6-31G(d) single point calculation. B3LYP/6-31G(d) calculations suggest that exo-complexation efficiencies of sodium ion to the cavity of lower rim of hosts 1 and 2 are 27.1 and 25.8 kcal/mol better than that of potassium ion, respectively. The exo-complexation efficiencies of potassium ion to the cavity of lower rim of hosts 1 and 2 are 33.3 and 31.5 kcal/mol better than the endo-complexation inside the upper rim (four aromatic rings) as expected from the experimental results. B3LYP/6-31G(d) calculation of the ethyl ester 2 shows 29.5 and 30.8 kcal/mol better exo-complexation efficiency for both sodium and potassium ions than the methyl ester 1.

Potentiometric Determination of Postssium Ion Using 15-Crown-5 Derivatives with Anthracene for the Selective Material (안트라센을 포함하는 15-Crown-5 유도체를 이온선택성 물질로 이용한 칼륨이온의 전위차법 정량)

  • Bae, Zun-Ung;Lee, Sang-Bong;Chang, Seung-Hyun;Kim, Ui-Rak
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.1
    • /
    • pp.31-39
    • /
    • 2001
  • Newly synthesized 15-Crown-5 derivatives including anthracene were used as neutral carriers for ion selective electrodes to determine potassium ion by potentiometry. Among the five neutral carriers studied in this work, N-(4'-benzo-15-crown-5-ether)-anthracene-9-imine was found to be the best in terms of selectivity and stability. The optimal composition of ion selective membrane was 1.0, 33.0 and 66.0 wt% for neutral carrier, PVC and plasticizer, resperctively. Addition of KTpCIPB used as a lipophilic additive improved the Nernst slope and the selectivity of potassium ion over alkali and alkaline earth metals. Especially, the selectivity of potassium ion over ammonium ion was remarkably good ($logK^{pot}_(K^+,NH_4^+}$=-2.59). The response time was also excellent ($t_{100}$=5sec) and continuous use of this electrode for three weeks has not changed the selectivity and analytical characteristics.

  • PDF

Ammonium Ion Binding Property of Naphtho-Crown Ethers Containing Thiazole as Sub-Cyclic Unit

  • Kim, Hong-Seok;Do, Kyung-Soon;Kim, Ki-Soo;Shim, Jun-Ho;Cha, Geun-Sig;Nam, Hak-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.10
    • /
    • pp.1465-1470
    • /
    • 2004
  • A short and efficient synthesis, solvent extraction and potentiometric measurements of new thiazole-containing naphtho-crown ethers are reported. The naphthalene moiety enhances the ammonium ion selectivity over potassium ion. The selectivity of ${NH_4}^+/K^+$ follows the trend $3\;{\approx}\;2\;>\;1$, indicating that the differences in conformational changes of 2 and 3 in forming ammonium complexes affect little on the resulting ammonium/potassium extraction selectivity ratio. The ammonium ion-selective electrodes were prepared with noctylphenyl ether plasticized poly(vinyl chloride) membranes containing 1-4 the effect of one naphthalene unit introduced on either right (2) or left (3) side of thiazolo-crown ether on their potentiometric properties (e.g., ammonium ion selectivity over other cations, response slopes, and detection limits) were not apparent. However, the ammonium ion selectivity of 1, 2 and 3 over other alkali metal and alkaline earth metal cations is 10-100 times higher than that of nonactin.