• Title/Summary/Keyword: Posture convergence exercise

Search Result 35, Processing Time 0.022 seconds

The Development of Exercise Accuracy Measurement Algorithm Supporting Personal Training's Exercise Amount Improvement

  • Oh, Seung-Taek;Kim, Hyeong-Seok;Lim, Jae-Hyun
    • International journal of advanced smart convergence
    • /
    • v.11 no.4
    • /
    • pp.57-67
    • /
    • 2022
  • The demand for personal training (PT), through which high exercise effects can be achieved within short-term, has recently increased. PT can achieve an exercise amount improvement effect, only if accurate postures are maintained upon performing PT, and exercise with inaccurate postures can cause injuries. However, research is insufficient on exercise amount comparisons and judging exercise accuracy on PT. This study proposes an exercise accuracy measurement algorithm and compares differences in exercise amounts according to exercise postures through experiments using a respiratory gas analyzer. The exercise accuracy measurement algorithm acquires Euler anglesfrom major body parts operated upon exercise through a motion device, based on which the joint angles are calculated. By comparing the calculated joint angles with each reference angle in each exercise step, the status of exercise accuracy is judged. The calculated results of exercise accuracy on squats, lunges, and push-ups showed 0.02% difference in comparison with actually measured results through a goniometer. As a result of the exercise amount comparison experiment according to accurate posture through a respiratory gas analyzer, the exercise amount was higher by 45.19% on average in accurate postures. Through this, it was confirmed that maintaining accurate postures contributes to exercise amount improvement.

Performance of Exercise Posture Correction System Based on Deep Learning (딥러닝 기반 운동 자세 교정 시스템의 성능)

  • Hwang, Byungsun;Kim, Jeongho;Lee, Ye-Ram;Kyeong, Chanuk;Seon, Joonho;Sun, Young-Ghyu;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.177-183
    • /
    • 2022
  • Recently, interesting of home training is getting bigger due to COVID-19. Accordingly, research on applying HAR(human activity recognition) technology to home training has been conducted. However, existing paper of HAR proposed static activity instead of dynamic activity. In this paper, the deep learning model where dynamic exercise posture can be analyzed and the accuracy of the user's exercise posture can be shown is proposed. Fitness images of AI-hub are analyzed by blaze pose. The experiment is compared with three types of deep learning model: RNN(recurrent neural network), LSTM(long short-term memory), CNN(convolution neural network). In simulation results, it was shown that the f1-score of RNN, LSTM and CNN is 0.49, 0.87 and 0.98, respectively. It was confirmed that CNN is more suitable for human activity recognition than other models from simulation results. More exercise postures can be analyzed using a variety learning data.

A Study of the design method for Interactive squat exercise Instrument (인터렉티브 스쿼트운동기구의 설계방법에 관한 연구)

  • Jeong, Byeong-Ho;Park, Ju-Hoon;Kim, Ji-won
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.2
    • /
    • pp.303-311
    • /
    • 2018
  • Squat exercise is one of the free weight exercises that are recognized as important from a bio-mechanical point of view. It is an important exercise to train lower extremity muscles in daily activities or sports activities and to strengthen trunk and lower body strength. It is effective and accurate to use a variety of assistive devices to calibrate athletic posture with squat exercise supported interactive device. The issues of the structural analysis for design a foot plate for squat exercise is to model the behavior by simplifying the dynamic behavior. In this paper, the authors proposed a exercise system design method for the vertical load distribution and bio-mechanical signal process used for the squat exercise mechanism analysis, and based on these results, designed device can make the more safe and reliable free weight exercise. It is applied to system design through design method with kinematic dynamic, VR device and estimation model of exercise.

Fitness Measurement system using deep learning-based pose recognition (딥러닝 기반 포즈인식을 이용한 체력측정 시스템)

  • Kim, Hyeong-gyun;Hong, Ho-Pyo;Kim, Yong-ho
    • Journal of Digital Convergence
    • /
    • v.18 no.12
    • /
    • pp.97-103
    • /
    • 2020
  • The proposed system is composed of two parts, an AI physical fitness measurement part and an AI physical fitness management part. In the AI fitness measurement part, a guide to physical fitness measurement and accurate calculation of the measured value are performed through deep learning-based pose recognition. Based on these measurements, the AI fitness management part designs personalized exercise programs and provides them to dedicated smart applications. To guide the measurement posture, the posture of the subject to be measured is photographed through a webcam and the skeleton line is extracted. Next, the skeletal line of the learned preparation posture is compared with the extracted skeletal line to determine whether or not it is normal, and voice guidance is provided to maintain the normal posture.

Non-face-to-face online home training application study using deep learning-based image processing technique and standard exercise program (딥러닝 기반 영상처리 기법 및 표준 운동 프로그램을 활용한 비대면 온라인 홈트레이닝 어플리케이션 연구)

  • Shin, Youn-ji;Lee, Hyun-ju;Kim, Jun-hee;Kwon, Da-young;Lee, Seon-ae;Choo, Yun-jin;Park, Ji-hye;Jung, Ja-hyun;Lee, Hyoung-suk;Kim, Joon-ho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.577-582
    • /
    • 2021
  • Recently, with the development of AR, VR, and smart device technologies, the demand for services based on non-face-to-face environments is also increasing in the fitness industry. The non-face-to-face online home training service has the advantage of not being limited by time and place compared to the existing offline service. However, there are disadvantages including the absence of exercise equipment, difficulty in measuring the amount of exercise and chekcing whether the user maintains an accurate exercise posture or not. In this study, we develop a standard exercise program that can compensate for these shortcomings and propose a new non-face-to-face home training application by using a deep learning-based body posture estimation image processing algorithm. This application allows the user to directly watch and follow the trainer of the standard exercise program video, correct the user's own posture, and perform an accurate exercise. Furthermore, if the results of this study are customized according to their purpose, it will be possible to apply them to performances, films, club activities, and conferences

A Study of Dynamic Motion Analysis Device for Free Weight Exercise (프리웨이트운동의 동적 동작분석장치에 관한 연구)

  • Rahman, Mustafizur;Park, Ju-hoon;Kim, Ji-won;Jeong, Byeong-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.2
    • /
    • pp.271-279
    • /
    • 2020
  • Squats and lunges are important exercises for strengthening the trunk and lower body among various free weight exercises. It should be achieved safe and effective excise through establishing of theoretical basis for exercise posture and standard movement. Therefore, it's necessary to develop the exercise model in order to prepare the scientific countermeasures for the prevent injuries and error movement through optimal exercise movement. For this purpose, it is effective to use appropriate instruments for motion compensation according to the optical motion and error motion. In this paper, we develop a motion model analysis system based on dynamic motion through the four-point load cell for dynamic motion analysis. Proposed analytical method, the optimal and the error motion numerical data is obtained through the dynamic motion analysis. And we verified that dynamic movement is simplified to establish the motion modeling according to the classification motion and the numerical quantification data for analyzing.

Physical Recovery through Health Management Education for the Disabled or the Elderly

  • SON, Byung-Kook;CHOI, Eun-Mee;KWON, Lee-Seung
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.4 no.1
    • /
    • pp.27-34
    • /
    • 2021
  • Purpose: The number of people with disabilities and the elderly over 65 years of age is gradually increasing due to physical disabilities and social aging. Their typical physical disorders or chronic diseases include low back pain, sciatic pain, arthritis, and musculoskeletal systems such as discs. The average prevalence of disease is 78%. These are various physical obstacles and hindrances in daily life. Research design, data and methodology: From August 6, 2019 to September 24, 2019, the Senior Welfare Center in Gyeyang-gu, Incheon, operated a healthy body exercise and health education program for living health management. Results: The vascular health index using U-Bio pulse wave was relatively good at the first average of +7.4, but the second average of -6.3. This can be seen as a result of the combination of diet and lifestyle education along with the effect of corrective exercise. As a result of body shape measurement analysis, the number of persons requiring management with 3 or more body imbalances was found to be from 75% before to 62.5% afterwards. Conclusions: Exercise effect appears when exercise lasts for at least 10 weeks. Some performances were good, but there were limitations due to the operation of a short training period.

A Study of Development of Auxiliary Devices for the Continuing Participation of Beginner Level Golfers (초보 골퍼들의 지속적 운동참여를 위한 보조기구 설계 연구)

  • Kim, Soo-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.8
    • /
    • pp.147-152
    • /
    • 2020
  • The purpose of this study was to develop an auxiliary device useful for promoting continued participation in the golf among young golfers and female beginner-level golfers who were gradually increasing in number but often losing interest in the golf and gave up playing golf due to difficulty with posture, boredom from golf itself, slow improvement of skill, etc., in the process of learning the golf. For that, a hardware device fitted with various sensors was attached to the lower part of golf club grip to develop a platform capable of collecting and transmitting the data on each golfer's swing posture, driving distance, etc. If a smartphone app, which can analyze and store those data, is developed and synchronized, each golfer's postures can be identified and golfers can correct the posture on their own. Moreover, the smartphone app provides the contents for self-comparison and comparison with others and will be able to infuse the beginner-level golfers with internal motivation for continued participation in the golfing exercise if the game-type elements are added.

Comparison of Tibialis Anterior Muscle Thickness with 4 Different Toe and Ankle Postures: Ultrasonographic Study

  • Jang, Tae-Jin;Hwang, Byeong-Hun;Jeon, In-Cheol
    • The Journal of Korean Physical Therapy
    • /
    • v.34 no.1
    • /
    • pp.12-17
    • /
    • 2022
  • Purpose: Ankle dorsiflexion is an essential element of normal functions, including walking, activities of daily living and sport activities. The tibialis anterior (TA) muscle functioned as a dorsiflexor and as a dynamic stabilizer of the ankle joint during walking and jumping. This study aimed to compare TA muscle thickness using ultrasonography according to the four different toe and ankle postures for the selective TA strengthening exercise. Methods: This study were recruited 26 (males: 15, females: 11) aged 20-30 years, with no injury ankle and calf in the medical history, had normal dorsiflexion and inversion range of motion (ROM). The thickness of the TA muscle was measured by ultrasonography in the four different toe and ankle postures: 1. Ankle dorsiflexion with all toe extension and ankle inversion (ITEDF); 2. Ankle dorsiflexion with all toe flexion and ankle inversion (ITFDF); 3. Ankle dorsiflexion with all toe extension and neutral position (NTEDF); 4. Ankle dorsiflexion with all toe flexion and neutral position (NTFDF). One-way repeated analysis of variance (ANOVA) and Bonferroni correction were used to confirm the significant difference among conditions. The level of statistical significance was set at α=0.01. Results: TA muscle thickness with ITFDF was significantly greater than in any other ankle positions, including ITEDF, NTFDF, and NTEDF (p<0.01). Conclusion: Among the four toe and ankle postures, isometric contraction in ITFDF postures showed the greatest increase in thickness of TA rather than ITEDF, NTEDF, and NTFDF postures. Based on these results, ITFDF can be recommended in an efficient way to selectively strengthen TA muscle.

A Study of Structural Analysis Simulation for Squat Exercise Foot Plate (스쿼트운동장치의 풋플레이트 구조해석에 관한 연구)

  • Jung, Byung-Geun;Kim, Ji-won;Jeong, Byeong-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.9
    • /
    • pp.365-372
    • /
    • 2017
  • Squat exercise is one of the important free weight exercises that can safely and effectively expect the athletic performance by establishing the rationale. Therefore, it is necessary to study the side effects caused by incorrect exercise, scientific countermeasures and to develop a exercise estimation model. It is effective and accurate to use a variety of assistive devices to calibrate athletic posture. The issues of the structural analysis for designing a foot plate for squat exercise is to model the behavior by the dynamic behavior. It should be consider that the center of gravity of each segmented body is different when the maximum load is applied. It is applied to complete system design through simulation method with kinematic dynamic, ground reaction force and load analysis for the free weight exercise equipment, VR device, and safety foot plate. In this paper, the authors propose the design method for the vertical load distribution applied in the design of the foot plate used for the squat exercise mechanism, and based on these results, design make the more safe and reliable free weight exercise equipment system.