• Title/Summary/Keyword: Posture control

Search Result 649, Processing Time 0.028 seconds

Effect of suboccipital muscle inhibition and combination technique on the flexibility of hamstring in individuals with shortened hamstring (뒤통수밑근 억제기법과 조합기법이 넙다리뒤근 단축 대상자의 넙다리뒤근 유연성에 미치는 영향)

  • Kim, Tae-Hun;Goo, Bong-Oh;Yun, Sam-Won;Lee, Jeong-Hun
    • PNF and Movement
    • /
    • v.13 no.1
    • /
    • pp.31-37
    • /
    • 2015
  • Purpose: The purpose of this study is to compare changes in the flexibility of hamstring muscles which are relaxed on suboccipital muscle through suboccipital muscle inhibition and combination technique. Methods: Thirty sample subjects (16 male and 14 female) were randomly divided into an experimental group (n=15) and a control group (n=15). 1. Suboccipital muscle inhibition: Suboccipital muscles of the patients were placed on a bed. The occipital region was placed on a therapist's fingers, and the posture was maintained for three minutes before remeasurement. 2. Treatment with combination technique (body bolster and wooden pillow): Wooden pillows were placed where the participants could relax the posterior arch of the atlas; additional body bolsters were also placed to avoid high pressure, and the treatment was maintained for three minutes before remeasurement. Results: There was a statistical difference in finger floor distance (FFD) and straight leg raise (SLR) results for those treated with SMI (P<0.05). There was no statistical difference in FFD and SLR results for those treated with the combination technique (P>0.05). Conclusion: Between the two intervention methods; the suboccipital muscle inhibition technique was more effective in increasing the flexibility of subjects with a shortened hamstring than was the combination technique.

The Correlation between Static and Dynamic Balance Index according to the Virtual Reality-Based Squat and Conventional Squat Exercise (가상현실기반과 고전적 스쿼트 운동 방법에 따른 정적, 동적 균형지수 간 상관분석)

  • Yoon, Junggyu
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Purpose : The purpose of this study was to examine the correlation between static and dynamic balance according to the virtual reality-based squat and conventional squat exercise. Methods : Twenty four participants were randomly assigned to the virtual reality-based squat (VRS) group (n=12) or conventional squat (CS) group (n=12). The static balance (C90 area, C90 angle, trace length, sway average velocity) and dynamic balance (forward, rearward, leftward, rightward) were measured using a force plate by BT4. The VRS group used the virtual reality system during 4 weeks, while the CS group underwent classical squat training. Independent t-test was used to test the homogeneity of the general characteristics of the subjects. The collected data was analyzed using the paired t-test for static and dynamic balance comparisons before and after exercise in both groups and Pearson's test for the correlation between static and dynamic balance according to the measured time. The significance level was set to 0.05. Results : There was no significant correlation between group and static and dynamic balance related variables (p>.05). There was a significant correlation between measurement time and static and dynamic balance related variables (p<.05). According to the measurement time, the static balance parameter C90 area in the VRS group after exercise was significantly decreased (p<.05). The values of forward, leftward and rightward in the VRS group were significantly increased after exercise (p<.05). Conclusion : It is suggested that 20 normal healthy adult men and women who have normal balance ability can improve their ability to control their posture by improving the balance ability when applying virtual reality-based squat exercise.

Effects of internal focus and external focus of attention on postural balance in school-aged children

  • Shin, Hwa Kyung;Kim, Ryu-Min;Lee, Jae-Moon
    • Physical Therapy Rehabilitation Science
    • /
    • v.8 no.3
    • /
    • pp.158-161
    • /
    • 2019
  • Objective: Attentional focus is one of the critical factors that has consistently been demonstrated to enhance motor performance and motor skill. Focusing attention on the inside of the body while engaging in a particular exercise is called internal focus (IF) and focus on the external environment is called external focus (EF). The purpose of this study was to identify effects of IF and EF of attention on postural balance in healthy school-aged children. Design: Cross-sectional study. Methods: Twenty-four healthy school-aged children participated in this study. School-aged children was defined as children ages 8-12 years old. They performed the one-legged standing with EF (focusing on the marker at the level of participants' chest and 150 cm away), IF (focusing the supporting feet), and control (no instruction) respectively. The order of the focus condition was randomly selected. The center of pressure (COP) range, distance, and velocity was measured to compare the effects of applying different attentional focuses in the three conditions. Results: The results of our study show that differences in COP range, distance, and velocity among groups were not significant between the different attentional focuses, although all variables of EF were smaller than IF. It is postulated that the reason for this may be that school school-aged children between 8-12 years old go through a transitional phase from IF to EF in effective motor learning. Conclusions: These findings reveal that the type of attentional focus did not have any effect on postural balance in healthy school-aged children.

Effects of Cervical Instability on Function of Deep Neck Flexor Muscle and Muscle Tonus of Neck Muscles (목 불안정성이 깊은목굽힘근의 기능과 목 근육들의 긴장도에 미치는 영향)

  • Lee, Sung-Hyun;Seo, Dong-Kwon
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.9 no.1
    • /
    • pp.123-131
    • /
    • 2021
  • Purpose : The time spent using smart devices is constantly increasing, particularly in recent times. Using smart devices for a long time with an incorrect posture may lead to cerebral palsy (CP), instability, and abnormal muscle tone. Therefore, we aimed to investigate the relationships among cervical instability, deep neck flexor (DNF) activity, range of motion (ROM), and muscle tonus. Methods : Fifty subjects with CP participated in this study, and they were physiotherapists at W Hospital in Daejeon. Those who voluntarily participated in the research were selected as candidates who fulfilled the selection criteria. According to an instability test, 25 subjects were assigned to the instability and control groups. All subjects first underwent the instability test to be allocated to the appropriate group. Those in the instability group tested positive on the instability test. The Neck Disability Index (NDI), ROM, muscle tone, and DNF activity were measured to evaluate their relationships. The DNF strength and endurance were measured using a cranio-cervical flexion test. The upper trapezius (UT), sternocleidomastoid (SCM), and suboccipital (SO) muscle tones were measured using a contact soft tissue tone measuring instrument. The statistical significance level was set to .05. Results : There were significant differences in the flexion, extension, and rotation of the cervical ROM (CROM) between the two groups (p<.05). The SCM, UT, and SO muscle tones were significantly different between the two groups (p<.05). The DNF strength and endurance showed a significant difference between the two groups (p<.05). Conclusion : We found that there were significant increases in the CROM and muscle tone and decrease in the DNF strength and endurance in the instability group. This indicated that cervical instability is affected by the DNF strength and endurance. We may recommend DNF exercises in cases of cervical instability in clinical environments.

Correlations between the Muscle Thickness of the Transverse Abdominis and the Multifidus Muscle with Spinal Alignment in College Students (대학생의 배가로근과 뭇갈래근 두께와 척추정렬간의 상관관계)

  • Lim, Jae-Heon
    • PNF and Movement
    • /
    • v.12 no.4
    • /
    • pp.243-248
    • /
    • 2014
  • Purpose: The transverse abdominis and themultifidus muscle are located in the core. They surround one's trunk and help in body stabilization. Specifically, they control spine articulation to maintain posture and balance. Therefore, weakened deep muscle in the trunk may cause spinal malalignment. This study aims to compare the correlation between the thickness of the transverse abdominis and the multifidus muscle and the spine alignment among college students in their 20s. Methods: This study measured the thickness of the transverse abdominis and the multifidus muscle of 42 healthy college students in their 20s using ultrasonic waves. The thickness of the muscle was measured for the length of the cross-section except for fascia. The thickness of the left and right muscles was measured, and the mean value was calculated. As the thickness of the transverse abdominis can increase because of pressure during exhalation, it was measured at the last moment of exhalation. Spinal alignment was measured by the kyphosis angle, lordosis angle, pelvic tilt, trunk inclination, lateral deviation, trunk imbalance, and surface rotation using Formetric III, which is a three-dimensional imaging equipment. They were measured for three times, and the mean values were calculated. The general characteristics of the subjects were analyzed using descriptive statistics. The correlations between each factor were analyzed using Pearson's correlation analysis. Results: The transverse abdominis showed asignificant correlation with trunk inclination (p<.05). The multifidus muscle showed a significant positive correlation with pelvic tilt and a negative correlation with surface rotation (p<.05). Conclusion: The thickness of transverse abdominis and the multifidus muscle appears to influence spinal alignment. Specifically, the multifidus muscle, which plays an important role on the sagittal plane, influences surface rotation, thus making it an important muscle for scoliosis patients. Therefore, a strengthening training program for the transverse abdominis and the multifidus muscle is necessary according to specific purposes among adults with spinal malalignment.

The Effects of Squat Exercises with Vertical Whole-Body Vibration on the Center of Pressure and Trunk Muscle Activity in Patients with Low Back Pain

  • Kang, Jeongil;Jeong, Daekeun;Choi, Hyunho
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.11 no.4
    • /
    • pp.2253-2260
    • /
    • 2020
  • Background: Patients with low back pain (LBP) experience misalignments in the center of pressure (COP) and muscle imbalances due to frequent onesided posture adjustments to avoid pain. Objectives: To identify the effects of Squat Exercises with Vertical Whole-Body Vibration on the Center of Pressure and Trunk Muscle Activity. Design: Randomized controlled trial. Methods: Thirty LBP patients with an imbalance in the COP were sampled and randomly assigned to an experimental group of 15 patients who under went an intervention involving squat exercises with vertical WBV and a control group of 15 patients who were treated via a walking intervention. As pretests before the interventions, the subjects' COP was identified by measuring their stability index (ST), and erector spinae, rectus abdominis, transverse abdominis, gluteus medius muscle activity was analyzed by determining the % reference voluntary contraction (%RVC) value using surface electromyography while sit to stand. After four weeks, a post test was conducted to remeasure the same variables using the same methods. Results: Statistically significant differences were found in the ST (P<.01) and trunk muscle (P<.05, P<.001) in the experimental group before and after the intervention. In terms of the differences between the left- and right-side (RL) muscle activity, only the transverse abdominis (TrA) and gluteus medius (GM) exhibited statistically significant increase (P<.05). A comparison of the groups showed statistically significant differences in the TrA with respect to muscle activity (P<.05) and in the RLTrA and RLGM in terms ofthe difference between left- and right-side muscle activity (P<.01). Conclusion: Squat exercises with vertical WBV produced effective changes in the COP of patients with LBP by reducing muscle imbalances through the delivery of a uniform force. In particular, strengthening the TrA and reducing an imbalance in the GM were determined to be important factors in improving the COP.

Signal Processing of Guide Sensor based on Multi-Masking and Center of Gravity Method for Automatic Guided Vehicle (다중 마스킹과 무게중심법을 기반한 AGV용 가이드 센서 신호처리)

  • Lee, Byeong-Ro;Lee, Ju-Won
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.2
    • /
    • pp.79-84
    • /
    • 2021
  • The most important device of the AGV is the guide sensor, and the typical function of this sensor is high accuracy and extraction of the road. If the accuracy of the guide sensor is low or the sensor device is extracted the wrong track, this causes the problems such as the AGV collision, track-out, the load falling due to AGV swing. In order to improve these problems, this study is proposed a signal processing method of the guide sensor based on multi-maskings and the center of gravity method, and evaluated its performance. As a result, the proposed method showed that the mean error of absolute value is 2.32[mm] and it showed performance improvement of 27[%] than the center of gravity method of existence. Therefore, when the proposed signal processing method is applied, It is thought that the posture control and driving stability of the AGV will be improved.

Underwater Drone Development for Ship Inspection Part 2: Monitoring System and Operation (선박 검사 수중 드론 개발 Part 2: 모니터링 시스템 및 운용)

  • Ha, Yeon-Chul;Kim, Jin-Woo;Kim, Goo;Jeong, Kyeong-Taek;Choi, Hyun-Deuk
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.3
    • /
    • pp.133-141
    • /
    • 2020
  • In this paper, the communication method of data information accepted by underwater drones and the implementation method to console display of data information were described, and the function of integrated monitoring system interface and the design and implementation of sonar interface were explained. The operation and posture of underwater drones can be controlled using a controller connected to the console, and the distance information between underwater drones and obstacles is obtained from sonar so that they can be visually displayed on the console screen along with camera images. The integrated monitoring navigation console is implemented to suit improvements, making it convenient and easy for workers to use. In addition, by upgrading integrated monitoring and control software functions, the company added user-specific project management functions and the output of reports for hull inspection to make them different and competitive from other underwater drones.

A Study on the Development of In-Socket Pressure Change Measurement Sensor for Estimation Locomotion Intention of Intelligent Prosthetic leg User (지능형 대퇴의족 사용자의 보행 의도 추정을 위한 소켓 내 압력 변화 측정 센서 개발에 관한 연구)

  • Park, Na-Yeon;Eom, Su-Hong;Lee, Eung-Hyuk
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.249-256
    • /
    • 2022
  • The prosthetic leg is a device that performs walking instead of a amputated lower limb, and require a change in locomotion mode by providing the user's intention to respond to a discontinuous locomotion environment. Research has been conducted to detect the users' intentions through biomechanical features inside the socket that directly contacts the cut site in demand for natural locomotion mode changes without external control equipment. However, there is still a need for a sensor system that is suitable for the internal environment of the main body and socket of the cut site. Accordingly, this paper proposed a film-type sensor system that is suitable for the main body characteristics of the cut site, is not affected by the temperature and humidity conditions inside the socket, and is easy to manufacture in various sizes. The proposed sensor is manufactured base on Velostat film and takes into account the pressure measurement characteristics that vary with size. Through the experiment, the change in the internal pressure of the socket due to the intentional posture performance of the wearer was measured, and the possibility of detecting the intention to change the locomotion mode was confirmed.

Effect of Backrest Height on Biomechanics Variables During VDT (Visual Display Terminal) Work (VDT 작업 시 의자 등받이 높이가 생체역학적 변인에 미치는 영향)

  • Jinjoo Yang;Sukhoon Yoon;Sihyun Ryu
    • Korean Journal of Applied Biomechanics
    • /
    • v.33 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • Objective: This study identifies the difference among the heights of a chair's backrest (High, Mid, No), the biomechanical changes chair users undergo over time, and the variables that can measure musculoskeletal disorders, eventually providing information on the appropriate type of backrest. Method: Eleven healthy subjects in their 20s and 30s who had no experience with musculoskeletal disorders or surgical operations within the last 6 months participated in this study. Computer typing tasks were randomly designated and performed according to the type of chair backrest, and evaluation was performed for Flexion-Relaxation Ratio (FRR) analysis after the computer typing tasks. This study used eight infrared cameras (sampling rate: 100 Hz) and nine-channel electromyography (sampling rate: 1,000 Hz). ANOVA with repeated measures was conducted to verify the results, with the statistical significance level being α = .05. Results: Although there was no significant difference in craniovertebral angle (CVA), this study showed time and interaction effects depending on the height of the backrest (p<.05). When working without the backrest, the head-spine angle was lower compared to the chairs with backrest, based on the computer work. As for the head angle, the higher the back of the chair was, the less the head flexion and the body angle became, whereas the body flexion became less when there was a backrest. In addition, the body flexion increased over time in all types of backrests (p<.05). The muscle activity of the upper body tended to be high in the high backrest chair. On the other hand, a lower muscle activity was found with a low backrest. Conclusion: These results show that a chair is more ergonomic when the body angle is correctly set without bending and when it is supported by a low backrest. Accordingly, this study determines that the backrest affects shoulder and neck musculoskeletal disorders during typing and that medium-height backrest chairs can help prevent musculoskeletal disorders, contrary to the expectation that high-backrest chairs are preferable.