• Title/Summary/Keyword: Postural task

Search Result 66, Processing Time 0.025 seconds

The Effects of Proprioceptive Exercise Combined with Cognitive Task on the Balance and Ankle Function of Chronic Ankle Instability Adults (인지 과제를 적용한 고유수용성 운동이 만성 발목 불안정성 성인의 균형과 발목 기능에 미치는 영향)

  • Chae, Ji-Su;Choe, Yu-Won;Kim, Myoung-Kwon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.15 no.1
    • /
    • pp.65-76
    • /
    • 2020
  • PURPOSE: The purpose of this study were to determine an intervention that involves proprioceptive exercises combined with cognitive task completion for adults with chronic ankle instability and to investigate the effects of the exercises on the static balance, dynamic balance, and ankle function of such individuals. METHODS: A total of 30 adults suffering from the aforementioned condition were randomly divided into experimental (n=15) and control (n=15) groups. The experimental group performed proprioceptive exercises in combination with cognitive tasks for 15 minutes in each session that was held three times a week for four 4 weeks, whereas the control group carried out only proprioceptive exercises. A Wii Balance Board, which enables examining the fluctuation area distance, and speed, was used to determine static balance; a Y-balance test kit was employed to measure dynamic balance; and the side hop, figure-of-8 hop, and square hop tests were conducted to ascertain ankle function. RESULTS: The results showed that the static balance, dynamic balance, and ankle function of both the experimental and control groups significantly improved. The participants were instructed to perform one-leg postural exercises with and without vision blocking for the affected leg. The experimental group showed more significant improvement than did the controls in terms of the fluctuation distance, speed, and area of static balance. CONCLUSION: In conclusion, although combined proprioceptive exercises and cognitive tasks were insufficient to enhance all types of balance among the subjects, it effectively reinforced their static balance.

Development of Quantitative Ergonomic Assessment Method for Helicopter Cockpit Design in a Digital Environment (가상 환경 상의 헬리콥터 조종실 설계를 위한 정량적인 인간공학적 평가 방법 개발)

  • Jung, Ki-Hyo;Park, Jang-Woon;Lee, Won-Sup;Kang, Byung-Gil;Uem, Joo-Ho;Park, Seik-Won;You, Hee-Cheon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.2
    • /
    • pp.203-210
    • /
    • 2010
  • For the development of a better product which fits to the target user population, physical workloads such as reach and visibility are evaluated using digital human simulation in the early stage of product development; however, ergonomic workload assessment mainly relies on visual observation of reach envelopes and view cones generated in a 3D graphic environment. The present study developed a quantitative assessment method of physical workload in a digital environment and applied to the evaluation of a Korean utility helicopter (KUH) cockpit design. The proposed assessment method quantified physical workloads for the target user population by applying a 3-step process and identified design features requiring improvement based on the quantified workload evaluation. The scores of physical workloads were quantified in terms of posture, reach, visibility, and clearance, and 5-point scales were defined for the evaluation measures by referring to existing studies. The postures of digital humanoids for a given task were estimated to have the minimal score of postural workload by finding all feasible postures that satisfy task constraints such as a contact between the tip of the index finger and a target point. The proposed assessment method was applied to evaluate the KUH cockpit design in the preliminary design stage and identified design features requiring improvement. The proposed assessment method can be utilized to ergonomic evaluation of product designs using digital human simulation.

Comparison of Static Balance Abilities on Respiratory Types in Healthy Adults (호흡 유형에 따른 건강한 성인의 정적균형능력 비교)

  • Yu, Daseul;Lim, Chaegil
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.2
    • /
    • pp.63-73
    • /
    • 2020
  • Purpose: To investigate breathing-related changes in the balance ability of healthy adults. Methods: The participants were 36 healthy adults in their 20s and 30s. All participants were trained in three breathing (neutral, thoracic, and abdominal) methods one week before measurements. We used AccuSway to measure each participant's balance ability, using each breathing technique, in two postures (bipedal and unipedal). Results: During the bipedal balance task, abdominal breathing produced significant increases in path length and sway velocity. Abdominal breathing resulted in significant changes in sample entropy at the anteroposterior location compared with neutral breathing (p<.05). In the normalized anteroposterior location, there were significant changes in backward movement during thoracic and abdominal breathing compared with those during neutral breathing (p<.05). During the unipedal balance task, path length and sway velocity increased significantly during voluntary breathing compared with those during neutral breathing (p<.05). There was a significant change in backward movement when abdominal breathing-compared with neutral breathing-was used in the normalized anteroposterior location (p<.05). In the normalized left-right location, there was a significant shift to the right during thoracic breathing compared with that during neutral breathing (p<.05). Conclusion: Compared with neutral breathing, altered voluntary breathing patterns affect balance in healthy adults. Our results indicated that that static balance was more affected by abdominal breathing than by neutral breathing. Future studies should examine variables such as the breathing volume, rhythm, and method.

The Effect of Center of Pressure Displacement and Muscle Activation Onset during Expected and Unexpected Sudden Upper Limb Loading in Subjects with Low Back Pain and Healthy Subjects (예측된 그리고 예측되진 않은 갑작스런 상지로의 부하 적용시 요통 환자와 정상인의 압력 중심 이동 및 근활성 개시에 미치는 영향)

  • Chae, Yun-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.18 no.4
    • /
    • pp.51-60
    • /
    • 2006
  • Purpose: This study was to compare the effect of center of pressure(COP) displacement and muscle activation onset during expected and unexpected sudden limb loading in subjects with low back pain and healthy control subjects. Most studies of COP displacement and muscle activation onset on postural task focused on sudden trunk loading or gross limb movements. Investigation of the COP displacement and muscle activation onset during expected and unexpected sudden upper limb loading deserves similar attention. Methods: For this study, 14 subjects with low back pain and 12 healthy control subjects are participated. Force plate and surface EMG measures were used to determine COP displacement and muscle activation onset under expected and unexpected sudden upper limb loading. Results: COP displacement and muscle activation onset under unexpected sudden upper limb loading were similar in subjects with low back pain and healthy control subjects. However, COP displacement and muscle activation onset under expected sudden upper limb loading were shortened in healthy control subject but not among the subjects with low back pain. Conclusion: The results provide evidence for impaired feed-forward control in subjects with low back pain.

  • PDF

Gait analysis of Healthy Adults with External Loads on Trunk (체간에 무게 부하를 적용한 정상 성인의 보행 분석)

  • Chang, Jong-Sung;Choi, Jin-Ho;Lee, Mi-Young;Kim, Meuung-Kwon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.7 no.1
    • /
    • pp.69-75
    • /
    • 2012
  • Purpose : The study was designed to investigate analysis of kinematics of lower extremity in healthy adults during walking with external loads on trunk. Methods : Fifteen healthy adults were recruited and The subjects provided written and informed consent prior to participation. They walked on a ten-meter walkway at a self-selected pace with loads of 0, 5, 10, and 15kg. They completed three trials in each condition and kinematic changes were measured. A three-dimensional motion analysis system was used to analyze lower extremity kinematic data. The data collected by each way of walking task and analyzed by One-way ANOVA. Results : There were significant differences in hip and knee joint on saggittal plane at initial contact and preswing, and significant differences in ankle joint on transverse plane at preswing. Conclusion : These findings revealed that increased external loads were changed joint angles and influenced postural strategies because of kinematic mechanism and future studies is recommended to find out prevention from damage of activities of daily living.

Gender Difference in Trunk Stability and Standing Balance during Unexpected Support Surface Translation in Healthy Adults (정상 성인 남녀의 선 자세에서 비예측적 지지면 이동 시체간 안정성과 균형능력 비교)

  • Kim, Minhee;Kim, Yushin;Yoon, BumChul
    • The Journal of Korean Physical Therapy
    • /
    • v.26 no.2
    • /
    • pp.97-103
    • /
    • 2014
  • Purpose: The aim of this study was to clarify the gender difference during standing balance in accordance with recruitment of abdominal muscles against sudden support surface translation. Methods: Twenty healthy males (n = 10, $26.50{\pm}3.54$ years, $170.60{\pm}6.30cm$, $72.80{\pm}5.69kg$) and females (n = 10, $24.40{\pm}2.63$ years, $163.00{\pm}4.97cm$, $52.10{\pm}4.41kg$) participated in the study. Each subject performed standing balance task on a platform, which moved in the anterior and posterior direction, with a total of 18 trials in three abdominal conditions (resting, hollowing, and bracing). We analyzed angular displacement of thoracic and lumbar spine and linear displacement of center of mass for evaluatione of spinal stability and standing balance, respectively. Results: Angular displacement of thoracic and lumbar spine and linear displacement of center of mass did not differ significantly between female and male in all conditions. Conclusion: Our results indicate that the ability to maintain spinal stability and standing balance were similar between male and female regardless of the abdominal contractile conditions and the direction of support surface translation.

Effect of Different Rest Intervals on Ankle Kinematics during a Dynamic Balance Task

  • Kwon, Yong Ung
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.3
    • /
    • pp.193-197
    • /
    • 2018
  • Objective: The relationship between the rest intervals during physical tasks and performance enhancement has been studied. However, whether or not different rest intervals would result in altered multiplanar ankle kinematics during performance of the Star Excursion Balance Test (SEBT) is unknown. Method: Fifteen healthy subjects (7 males and 8 females) without a history of ankle injuries were participated in this study. 3 rest intervals of 10, 20, and 40 seconds were used during the current study. Three visits were required in order to complete the 3 rest intervals. Variables of interest included dorsiflexion (DF) excursion, tibial internal rotation (TIR), and eversion (EV) excursions. The means of ankle angular excursions were compared across the 3 directions in the 3 rest interval groups. Results: There were no significant main effects for any variables between restintervals. However, DF excursion in the anteromedial (AM) direction was greaterthan in both the medial (M) and posteromedial (PM) directions and was greater in the M direction compared to the PM direction. TIR excursion in the AM direction was less than in both the M and PM directions. Conclusion: Different rest intervals ranging from 10 to 40 seconds did not influence ankle angular excursions during the SEBT in a healthy population. However, our results suggest that multiplanar motion is necessary during the SEBT and differs depending on the direction of movement.

Change of Balance Ability in Subjects with Pain-Related Temporomandibular Disorders

  • Ja Young Kim;Sang Seok Yeo
    • The Journal of Korean Physical Therapy
    • /
    • v.34 no.6
    • /
    • pp.321-325
    • /
    • 2022
  • Purpose: Temporomandibular disorder (TMD) is a condition defined as pain and dysfunction of temporomandibular joints and masticatory muscles. Abnormal interconnections between temporomandibular muscles and cervical spine structures can cause the changes of postural alignment and balance ability. The aim of this study was to investigate changes in static balance ability in subjects with painrelated TMD. Methods: This study conducted on 25 subjects with TMD and 25 control subjects with no TMD. Pressure pain thresholds (PPTs) of the masseter and temporalis muscles were measured using a pressure algometer. Static balance ability was assessed during one leg standing using an Inertial Measurement Unit (IMU) sensor. During balance task, the IMU sensors measured motion and transfer movement data for center of mass (COM) motion, ankle sway and hip sway. Results: PPTs of masseter and temporalis muscles were significantly lower in the TMD group than in the control group (p<0.05). One leg standing, hip sway, and COM sway results were significantly greater in the TMD group (p<0.05), but ankle sways were not different between group. Conclusion: We suggest pain-related TMD is positively related to reduced PPTs of masticatory muscles and to static balance ability. These results should be considered together with global body posture when evaluating or treating pain-related TMD.

Comparison of Six Observational Methods for Assessing Arm- and Hand-intensive Tasks (어깨 및 팔 동작 부하 측정을 위한 관찰적 기법 비교)

  • Dohyung Kee
    • Journal of the Korea Safety Management & Science
    • /
    • v.26 no.2
    • /
    • pp.87-92
    • /
    • 2024
  • This study aims to compare six observational methods for assessing arm- and hand-intensive tasks, based on literature review. The comparison was conducted in viewpoints of body regions, force/external load, motion repetition, other factors including static posture, coupling, duration/break, pace, temperature, precision task, and final risk or exposure level. The number of risk factors assessed was more, and assessment procedure was more complex than the observational methods for assessing whole-body postural loads such as Ovako Working Posture Analysis System(OWAS), Rapid Upper Limb Assessment(RULA), and Rapid Entire Body Assessment(REBA). Due to these, the intra- and inter-reliabilities were not high. A past study showed that while Hand Arm Risk Assessment Method(HARM) identified the smallest proportion of the work tasks as high risk, Strain Index(SI) and Quick Exposure Check(QEC) hand/wrist were the most rigorous with classifying most work tasks as high risk. This study showed that depending on the observational technique compared, the evaluation factors, risk or exposure level, and evaluation results were different, making it necessary to select a technique appropriate for the characteristics of the work being assessed.

The Effect of Sensory Stimulation on Postural Tremor at Index Finger of Patients with Essential Tremor (ET) (본태성 진전 환자의 검지에서의 자세성 진전에 대한 감각자극 효과)

  • Lee, S.K.;Kim, J.W.;Kwon, Y.R.;Lee, Y.J.;Lee, J.H.;Eom, G.M.;Kwon, D.Y.;Lee, C.N.;Seo, Y.M.;Kim, M.K.;Park, K.W.;Jeong, H.C.;Manto, M.
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.129-134
    • /
    • 2013
  • The essential tremor is an involuntary oscillatory movement of body parts. Conventional treatments of essential tremor have little effects in some patients and also leads to significant side effects. Alternative to these treatments, sensory stimulation may have beneficial effects on the essential tremor. The purpose of this study was to analyze an effect of sensory stimulation on essential tremor. Ten patients with essential tremor ($67.4{\pm}8.82$ yrs, 5 men and 5 women) participated in this study. Three-axis gyro sensors were attached on index finger, hand and forearm of patients. Task of 'arms outstretched forward' was performed with and without sensory stimulation. Vectorsum of three dimensional angular velocities (pitch, roll, yaw) was calculated. Outcome measures included root-meansquare (RMS) mean of the vector-sum amplitude, total power, peak power and peak frequency. RMS amplitude, total power and peak power were reduced by sensory stimulation (p < 0.05). Peak frequency was not affected by sensory stimulation. The results indicate that the sensory stimulation is useful to suppress the essential tremor.