• Title/Summary/Keyword: Post-synthetic modification

Search Result 6, Processing Time 0.016 seconds

Enhanced Electrochemical Detection of Heavy Metal Ions via Post-synthetic Schiff Base Modification of MWCNT-MOF Composites

  • Yeon-Joo Kim;Seung-Ho Choi;Seon-Jin Choi
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.5
    • /
    • pp.366-372
    • /
    • 2024
  • In this study, we present a novel approach to improve electrochemical heavy metal ion (HMI) sensing responses via post-synthetic modification of carbon nanotube-based metal-organic framework (MOF) nanocomposites with a Schiff base. UiO66-NH2 was employed as the MOF and incorporated with multi-walled carbon nanotubes (MWCNT) through in-situ growth, enhancing the electrical conductivity of the MWCNT-UiO66-NH2 composite. Subsequently, the Schiff base, which has been proven to be an excellent ligand for metal ion detection, was functionalized onto MWCNT-UiO66-NH2 via post-synthetic modification to improve its HMI absorption capacity. To evaluate the effect of the Schiff base on HMI detection capacity, electrochemical sensing of Cd2+, Pb2+, Cu2+, and Hg2+ was performed in an aqueous solution utilizing the MWCNT-UiO66-Schiff modified electrode as well as the bare electrode. Individual differential pulse anodic stripping voltammetry results revealed that the modified electrode with MWCNT-UiO66-Schiff exhibited increased HMI sensing properties, especially with 1.82-fold improvement in average oxidation currents toward 10 µM of Cu2+ compared to that for a bare glassy carbon electrode. The selective Cu2+-sensing properties of MWCNT-UiO66-Schiff were reflected in the highly selective Cu2-binding affinity of the Schiff base-containing model molecules compared to those of Cd2+, Hg2+, and Pb2+. Our work provides a new strategy for improving the sensing properties of electrochemical HMI sensors by the post-synthetic modification of MWCNT-UiO66 with a Schiff base.

Recent Progress on Adsorptive Removal of Cd(II), Hg(II), and Pb(II) Ions by Post-synthetically Modified Metal-organic Frameworks and Chemically Modified Activated Carbons

  • Rallapalli, Phani Brahma Somayajulu;Choi, Suk Soon;Ha, Jeong Hyub
    • Applied Chemistry for Engineering
    • /
    • v.33 no.2
    • /
    • pp.133-144
    • /
    • 2022
  • Fast-paced industrial and agricultural development generates large quantities of hazardous heavy metals (HMs), which are extremely damaging to individuals and the environment. Research in both academia and industry has been spurred by the need for HMs to be removed from water bodies. Advanced materials are being developed to replace existing water purification technologies or to introduce cutting-edge solutions that solve challenges such as cost efficacy, easy production, diverse metal removal, and regenerability. Water treatment industries are increasingly interested in activated carbon because of its high adsorption capacity for HMs adsorption. Furthermore, because of its huge surface area, abundant functional groups on surface, and optimal pore diameter, the modified activated carbon has the potential to be used as an efficient adsorbent. Metal-organic frameworks (MOFs), a novel organic-inorganic hybrid porous materials, sparked an interest in the elimination of HMs via adsorption. This is due to the their highly porous nature, large surface area, abundance of exposed adsorptive sites, and post-synthetic modification (PSM) ability. This review introduces PSM methods for MOFs, chemical modification of activated carbons (ACs), and current advancements in the elimination of Pb2+, Hg2+, and Cd2+ ions from water using modified MOFs and ACs via adsorption.

Stability of Proteasomes Extracted from Pressurized, Aged Skeletal Muscles

  • Yamamoto, Shuhei;Suzuki, Atsushi;Nishiumi, Tadayuki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.2
    • /
    • pp.282-288
    • /
    • 2009
  • The present paper describes the effects of pressure and post-mortem aging treatments on in situ proteasome activity in rabbit and bovine skeletal muscles. Synthetic peptide hydrolyzing activity of rabbit proteasomes remained in the muscle after exposure to pressures up to 100 MPa. However, when a pressure of 400 MPa or more was applied, proteasomes were markedly inactivated. The extraction of proteasomes from excessively pressurized muscle appeared to be difficult. Proteasomes in aged muscle remained relatively stable throughout the aging process, with activity after 168 h (7 days) being 35%, 48%, 53% and 31% of the 0 h post-mortem LLVY, LSTR, AAF and LLE total hydrolyzing activities, respectively. The synthetic peptide hydrolyzing activities of bovine muscle proteasomes were similar to those of rabbit skeletal muscle proteasomes. The results suggest that synthetic peptide hydrolyzing activity remains in muscle exposed to relatively low pressures. Furthermore, it is known that high-pressure treatment induces fragmentation of myofibrils, modification of actin-myosin interaction and activation of intramuscular proteinases, cathepsins and calpains. Thus, proteasomes are probably involved in the tenderization process in combination with other intramuscular proteinases under high-pressure conditions. Our findings confirmed that proteasomes play a role in meat tenderization induced by high-pressure treatment or aging.

Enhanced Carbon Dioxide Adsorption on Post-Synthetically Modified Metal-Organic Frameworks

  • Ko, Na-Keun;Kim, Ja-Heon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2705-2710
    • /
    • 2011
  • Four MOFs functionalized with 1-Me, 1-Pr, 1-Ph, and 1-$PhCF_3$ were prepared through post-synthetic modifications of a metal-organic framework (MOF), UMCM-1-$NH_2$ (1) with acetic, butyric, benzoic, and 4-(trifluoromethyl)benzoic anhydrides, respectively. Methane adsorption measurements between 253 and 298 K at pressures up to 1 bar indicated that both 1-Ph and 1-$PhCF_3$ adsorbed more $CH_4$ than the parent MOF, 1. All the functionalized MOFs adsorbed more $CO_2$ than 1 under conditions similar to the $CH_4$ test. The introduction of functional groups promoted adsorption of both $CH_4$ and $CO_2$ despite significantly reducing Brunauer-Emmet-Teller (BET) surface area: 4170 (1), 3550 (1-Me), 2900 (1-Pr), 3680 (1-Ph), and 3520 $m^2/g$ (1-$PhCF_3$). Electron-withdrawing aromatic groups (1-Ph, 1-$PhCF_3$) more effectively enhanced $CO_2$ adsorption than electron-donating alkyl groups (1-Me, 1-Pr). In particular, 1-Ph adsorbed 23% more $CO_2$ at 298 K and 50% more at 253 K than 1.

Glutamic Acid-Grafted Metal-Organic Framework: Preparation, Characterization, and Heavy Metal Ion Removal Studies

  • Phani Brahma Somayajulu Rallapalli;Jeong Hyub Ha
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.556-565
    • /
    • 2023
  • Fast industrial and agricultural expansion result in the production of heavy metal ions (HMIs). These are exceedingly hazardous to both humans and the environment, and the necessity to eliminate them from aqueous systems prompts the development of novel materials. In the present study, a UIO-66 (COOH)2 metal-organic framework (MOF) containing free carboxylic acid groups was post-synthetically modified with L-glutamic acid via the solid-solid reaction route. Pristine and glutamic acid-treated MOF materials were characterized in detail using several physicochemical techniques. Single-ion batch adsorption studies of Pb(II) and Hg(II) ions were carried out using pristine as well as amino acid-modified MOFs. We further examined parameters that influence removal efficiency, such as the initial concentration and contact time. The bare MOF had a higher ion adsorption capacity for Pb(II) (261.87 mg/g) than for Hg(II) ions (10.54 mg/g) at an initial concentration of 150 ppm. In contrast, an increased Hg(II) ion adsorption capacity was observed for the glutamic acid-modified MOF (80.6 mg/g) as compared to the bare MOF. The Hg(II) ion adsorption capacity increased by almost 87% after modification with glutamic acid. Fitting results of isotherm and kinetic data models indicated that the adsorption of Pb(II) on both pristine and glutamic acid-modified MOFs was due to surface complexation of Pb(II) ions with available -COOH groups (pyromellitic acid). Adsorption of Hg(II) on the glutamic acid-modified MOF was attributed to chelation, in which glutamic acid grafted onto the surface of the MOF formed chelates with Hg(II) ions.

Reviews on Post-synthetic Modification of Metal-Organic Frameworks Membranes (다결정 금속 유기 골격체 분리막의 후처리 성능 제어기술 개발 동향)

  • Hyuk Taek, Kwon;Kiwon, Eum
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.367-382
    • /
    • 2022
  • Numerous metal-organic frameworks (MOFs) produced by periodic combinations of organic ligands and metal ions or metal-oxo clusters have led the way for the creation of energy-efficient membrane-based separations that may serve as viable replacements for traditional thermal counterparts. Although tremendous progress has been made over the past decade in the synthesis of polycrystalline MOF membranes, only a small number of MOFs have been exploited in the relevant research. Intercrystalline defects, or nonselective diffusion routes in polycrystalline membranes, are likely the reason behind the delay. Postsynthetic modifications (PSMs) are newly emerging strategies for providing polycrystalline MOF membrane diversity by leveraging advanced membranes as a platform and improving their separation capabilities via physical and/or chemical treatments; therefore, neither designing and developing MOFs nor tailoring membrane synthesis techniques for focused MOFs is necessary. In this minireview, seven subclasses of PSM techniques that have recently been adapted to polycrystalline MOF membranes are outlined, along with obstacles and future directions.