DOI QR코드

DOI QR Code

Reviews on Post-synthetic Modification of Metal-Organic Frameworks Membranes

다결정 금속 유기 골격체 분리막의 후처리 성능 제어기술 개발 동향

  • Hyuk Taek, Kwon (Department of Chemical Engineering, Pukyong National University) ;
  • Kiwon, Eum (School of Chemical Engineering, Soongsil University)
  • Received : 2022.10.31
  • Accepted : 2022.11.03
  • Published : 2022.12.31

Abstract

Numerous metal-organic frameworks (MOFs) produced by periodic combinations of organic ligands and metal ions or metal-oxo clusters have led the way for the creation of energy-efficient membrane-based separations that may serve as viable replacements for traditional thermal counterparts. Although tremendous progress has been made over the past decade in the synthesis of polycrystalline MOF membranes, only a small number of MOFs have been exploited in the relevant research. Intercrystalline defects, or nonselective diffusion routes in polycrystalline membranes, are likely the reason behind the delay. Postsynthetic modifications (PSMs) are newly emerging strategies for providing polycrystalline MOF membrane diversity by leveraging advanced membranes as a platform and improving their separation capabilities via physical and/or chemical treatments; therefore, neither designing and developing MOFs nor tailoring membrane synthesis techniques for focused MOFs is necessary. In this minireview, seven subclasses of PSM techniques that have recently been adapted to polycrystalline MOF membranes are outlined, along with obstacles and future directions.

유기 전구체와 금속 이온, 또는 금속-옥소 클로스터 간의 규칙적 배열을 통한 종의 다양성을 장점으로 하는 금속-유기 골격체(Metal-Organic Frameworks, MOFs)는 에너지 사용량이 높은 상변화 기반 분리공정을 대체할 수 있는 에너지 효율적인 막 기반 분리 기술의 개발 가능성을 열어주었다. 이에 최근 10년 동안 다결정 MOFs 분리막 합성 기술에서 상당한 진전이 있었지만, 매우 제한된 종류의 MOFs만이 활용되고 있다. 이러한 기술 개발의 정체는 다결정 분리막의 비 선택적인 확산 경로인 결정 사이 결함(intercrystalline defects)에 대한 명확한 해결법이 없기 때문이다. 후처리 성능 제어기술(postsynthetic modifications, PSMs)은 기존 분리막을 플랫폼으로 활용하고 이를 물리적 그리고/혹은 화학적으로 처리함을 통해 분리 특성을 개선 혹은 변경하는 기술을 말한다. PSMs 기술은 특정 분리막을 개발하는 데 있어서 새로운 MOFs를 설계하거나 막 합성 기술을 개발하지 않아도 된다는 장점이 있어서 다결정 MOF 분리막의 다양성을 제공하기 위한 새로 부상하는 전략으로 평가 된다. 본 총설에서는 PSMs 기술을 7개의 세부기술((1) 공유결합법, (2) 결정간 결함 플러깅법, (3) 결정 내부 결함 치유법, (4) 기공내 기능성 소재 함침법, (5) 기공 경화법, (6) 전구체 치환법 및 (7) 비정질화법)로 분류하고, 각 세부기술의 연구 동향 및 도전과제 그리고 향후 연구 방향에 대해 논의하고자 한다.

Keywords

Acknowledgement

이 논문은 한국 연구재단의 지원을 받아 수행된 연구임(No. NRF-2020R1C1C1013869, No. 2021R1C1C1008531.)

References

  1. S. M. Moosavi, A. Nandy, K. M. Jablonka, D. Ongari, J. P. Janet, P. G. Boyd, Y. Lee, B. Smit, and H. J. Kulik, "Understanding the diversity of the metal-organic framework ecosystem", Nat. Commun., 11, 1-10 (2020). https://doi.org/10.1038/s41467-019-13993-7
  2. J. R. Long and O. M. Yaghi, "The pervasive chemistry of metal-organic frameworks", Chem. Soc. Rev., 38, 1213-1214 (2009). https://doi.org/10.1039/b903811f
  3. M. Kalaj and S. M. Cohen, "Postsynthetic modification: an enabling technology for the advancement of metal-organic frameworks", ACS Cent. Sci., 6, 1046-1057 (2020). https://doi.org/10.1021/acscentsci.0c00690
  4. Z. Wang and S. M. Cohen, "Postsynthetic modification of metal-organic frameworks", Chem. Soc. Rev., 38, 1315-1329 (2009). https://doi.org/10.1039/b802258p
  5. K. K. Tanabe and S. M. Cohen, "Postsynthetic modification of metal-organic frameworks-a progress report", Chem. Soc. Rev., 40, 498-519 (2011). https://doi.org/10.1039/C0CS00031K
  6. S. Mandal, S. Natarajan, P. Mani, and A. Pankajakshan, "Post-Synthetic modification of metal -organic frameworks toward applications", Adv. Funct. Mater., 31, 2006291
  7. Y. Liu, Z. Ng, E. A. Khan, H. K. Jeong, C. bun Ching, and Z. Lai, "Synthesis of continuous MOF-5 membranes on porous α-alumina substrates", Microporous Mesoporous Mater., 118, 296-301 (2009). https://doi.org/10.1016/j.micromeso.2008.08.054
  8. R. Ranjan and M. Tsapatsis, "Microporous metal organic framework membrane on porous support using the seeded growth method", Chem. Mater., 21, 4920-4924 (2009). https://doi.org/10.1021/cm902032y
  9. X. Ma, P. Kumar, N. Mittal, A. Khlyustova, P. Daoutidis, K. Andre Mkhoyan, and M. Tsapatsis, "Zeolitic imidazolate framework membranes made by ligand-induced permselectivation", Science, 361, 1008-1011 (2018). https://doi.org/10.1126/science.aat4123
  10. G. He, M. Dakhchoune, J. Zhao, S. Huang, and K. V. Agrawal, "Electrophoretic nuclei assembly for crystallization of high-performance membranes on unmodified supports", Adv. Funct. Mater., 28, 1-8 (2018).
  11. H. Bux, F. Liang, Y. Li, J. Cravillon, M. Wiebcke, and J. Caro, "Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis", J. Am. Chem. Soc., 131, 16000-16001 (2009). https://doi.org/10.1021/ja907359t
  12. Y. Hu, X. Dong, J. Nan, W. Jin, X. Ren, N. Xu, and Y. M. Lee, "Metal-organic framework membranes fabricated via reactive seeding", Chem. Commun., 47, 737-739 (2011). https://doi.org/10.1039/C0CC03927F
  13. J. Yao, D. Dong, D. Li, L. He, G. Xu, and H. Wang, "Contra-diffusion synthesis of ZIF-8 films on a polymer substrate", Chem. Commun., 47, 2559-2561 (2011). https://doi.org/10.1039/c0cc04734a
  14. O. Shekhah, R. Swaidan, Y. Belmabkhout, M. Du Plessis, T. Jacobs, L. J. Barbour, I. Pinnau, and M. Eddaoudi, "The liquid phase epitaxy approach for the successful construction of ultra-thin and defect-free ZIF-8 membranes: Pure and mixed gas transport study", Chem. Commun., 50, 2089-2092 (2014). https://doi.org/10.1039/c3cc47495j
  15. H. T. Kwon, H. K. Jeong, "Highly propylene-selective supported zeolite-imidazolate framework (ZIF-8) membranes synthesized by rapid microwave-assisted seeding and secondary growth", Chem. Commun., 49, 3854-3856 (2013). https://doi.org/10.1039/c3cc41039k
  16. A. J. Brown, N. A. Brunelli, K. Eum, F. Rashidi, J. R. Johnson, W. J. Koros, C. W. Jones, and S. Nair, "Interfacial microfluidic processing of metalorganic framework hollow fiber membranes", Science, 345, 72-75 (2014). https://doi.org/10.1126/science.1251181
  17. H. T. Kwon, H. K. Jeong, A. S. Lee, H. S. An, T. Lee, E. Jang, J. S. Lee, and J. Choi, "Defect-induced ripening of zeolitic-imidazolate framework ZIF-8 and its implication to vapor-phase membrane synthesis", Chem. Commun., 52, 11669-11672 (2016). https://doi.org/10.1039/c6cc05433a
  18. W. Li, P. Su, Z. Li, Z. Xu, F. Wang, H. Ou, J. Zhang, G. Zhang, and E. Zeng, "Ultrathin metal-organic framework membrane production by gel-vapour deposition", Nat. Commun., 8, 1-8 (2017). https://doi.org/10.1038/s41467-016-0009-6
  19. A. Huang and J. Caro, "Covalent post-functionalization of Zeolitic imidazolate framework ZIF-90 membrane for enhanced hydrogen selectivity", Angew. Chemie - Int. Ed., 50, 4979-4982 (2011). https://doi.org/10.1002/anie.201007861
  20. A. Huang, N. Wang, C. Kong, and J. Caro, "Organosilica-functionalized zeolitic imidazolate framework ZIF-90 membrane with high gas-separation performance", Angew. Chemie - Int. Ed., 51, 10551-10555 (2012). https://doi.org/10.1002/anie.201204621
  21. A. Huang, Q. Liu, N. Wang, and J. Caro, "Organosilica functionalized zeolitic imidazolate framework ZIF-90 membrane for CO2/CH4 separation", Micropor. Mesopor. Mater., 192, 18-22 (2014). https://doi.org/10.1016/j.micromeso.2013.09.025
  22. S. Friebe, B. Geppert, F. Steinbach, and J. Caro, "Metal-Organic framework UiO-66 layer: A highly oriented membrane with good selectivity and hydrogen permeance", ACS Appl. Mater. Interfaces., 9, 12878-12885 (2017). https://doi.org/10.1021/acsami.7b02105
  23. J. Hua, C. Li, H. Tao, L. Wang, E. Song, H. Lian, C. Wang, J. Jiang, Y. Pan, and W. Xing, "Improved C3H6/C3H8 separation performance on ZIF-8 membranes through enhancing PDMS contact-dependent confinement effect", J. Membr. Sci., 636, 119613
  24. J. Li, H. Lian, K. Wei, E. Song, Y. Pan, and W. Xing, "Synthesis of tubular ZIF-8 membranes for propylene/propane separation under high-pressure", J. Membr. Sci., 595, 117503 (2020).
  25. L. Sheng, C. Wang, F. Yang, L. Xiang, X. Huang, J. Yu, L. Zhang, Y. Pan, and Y. Li, "Enhanced C3H6/C3H8 separation performance on MOF membranes through blocking defects and hindering framework flexibility by silicone rubber coating", Chem. Commun., 53, 7760-7763 (2017). https://doi.org/10.1039/C7CC03887A
  26. M. R. Abdul Hamid and H. K. Jeong, "Flow synthesis of polycrystalline ZIF-8 membranes on polyvinylidene fluoride hollow fibers for recovery of hydrogen and propylene", J. Ind. Eng. Chem., 88, 319-327 (2020). https://doi.org/10.1016/j.jiec.2020.04.031
  27. M. R. Abdul Hamid, S. Park, J. S. Kim, Y. M. Lee, and H. K. Jeong, "Synthesis of ultrathin zeolitic imidazolate framework ZIF-8 membranes on polymer hollow fibers using a polymer modification strategy for propylene/propane separation", Ind. Eng. Chem. Res., 58, 14947-14953 (2019). https://doi.org/10.1021/acs.iecr.9b02969
  28. W. Wu, Z. Li, Y. Chen, and W. Li, "Polydopamine-modified metal-organic framework membrane with enhanced selectivity for carbon capture", Environ. Sci. Technol., 53, 3764-3772 (2019). https://doi.org/10.1021/acs.est.9b00408
  29. P. D. Sutrisna, J. Hou, M. Y. Zulkifli, H. Li, Y. Zhang, W. Liang, D. M. D'Alessandro, and V. Chen, "Surface functionalized UiO-66/Pebax-based ultrathin composite hollow fiber gas separation membranes", J. Mater. Chem. A., 6, 918-931 (2018). https://doi.org/10.1039/C7TA07512J
  30. H. Chang, Y. Wang, L. Xiang, D. Liu, C. Wang, and Y. Pan, "Improved H2/CO2 separation performance on mixed-linker ZIF-7 polycrystalline membranes", Chem. Eng. Sci., 192, 85-93 (2018). https://doi.org/10.1016/j.ces.2018.07.027
  31. M. Hayashi, D. T. Lee, M. D. de Mello, J. A. Boscoboinik, and M. Tsapatsis, "ZIF-8 Membrane Permselectivity Modification by Manganese(II) Acetylacetonate Vapor Treatment", Angew. Chemie - Int. Ed., 60, 9316-9320
  32. A. Huang, Q. Liu, N. Wang, Y. Zhu, and J. Caro, "Bicontinuous zeolitic imidazolate framework zif-8@go membrane with enhanced hydrogen selectivity", J. Am. Chem. Soc., 136, 14686-14689 (2014). https://doi.org/10.1021/ja5083602
  33. O. Tzialla, C. Veziri, X. Papatryfon, K. G. Beltsios, A. Labropoulos, B. Iliev, G. Adamova, T. J. S. Schubert, M. C. Kroon, M. Francisco, L. F. Zubeir, G. E. Romanos, and G. N. Karanikolos, "Zeolite imidazolate framework-ionic liquid hybrid membranes for highly selective CO2 separation", J. Phys. Chem. C, 117, 18434-18440 (2013). https://doi.org/10.1021/jp4051287
  34. S. Chaemchuen, Z. Luo, K. Zhou, B. Mousavi, S. Phatanasri, M. Jaroniec, and F. Verpoort, "Defect formation in metal-organic frameworks initiated by the crystal growth-rate and effect on catalytic performance", J. Catal., 354, 84-91 (2017). https://doi.org/10.1016/j.jcat.2017.08.012
  35. G. C. Shearer, S. Chavan, S. Bordiga, S. Svelle, U. Olsbye, and K. P. Lillerud, "Defect Engineering: Tuning the Porosity and Composition of the Metal- Organic Framework UiO-66 via Modulated Synthesis", Chem. Mater., 28, 3749-3761 (2016). https://doi.org/10.1021/acs.chemmater.6b00602
  36. H. Wu, Y. S. Chua, V. Krungleviciute, M. Tyagi, P. Chen, T. Yildirim, and W. Zhou, "Unusual and Highly Tunable Missing-Linker Defects in Zirconium Metal-Organic Framework UiO-66 and Their Important Effects on Gas Adsorption", J. Am. Chem. Soc., 135, 10525-10532 (2013). https://doi.org/10.1021/ja404514r
  37. G. C. Shearer, S. Chavan, J. Ethiraj, J. G. Vitillo, S. Svelle, U. Olsbye, C. Lamberti, S. Bordiga, and K. P. Lillerud, "Tuned to perfection: Ironing out the defects in metal-organic framework UiO-66", Chem. Mater., 26, 4068-4071 (2014). https://doi.org/10.1021/cm501859p
  38. X. Wang, L. Zhai, Y. Wang, R. Li, X. Gu, Y. Di Yuan, Y. Qian, Z. Hu, and D. Zhao, "Improving Water-Treatment Performance of Zirconium MetalOrganic Framework Membranes by Postsynthetic Defect Healing", ACS Appl. Mater. Interfaces., 9, 37848-37855 (2017). https://doi.org/10.1021/acsami.7b12750
  39. S. J. D. Smith, K. Konstas, C. H. Lau, Y. M. Gozukara, C. D. Easton, R. J. Mulder, B. P. Ladewig, and M. R. Hill, "Post-Synthetic Annealing: Linker Self-Exchange in UiO-66 and Its Effect on Polymer-Metal Organic Framework Interaction", Cryst. Growth Des., 17, 4384-4392 (2017). https://doi.org/10.1021/acs.cgd.7b00685
  40. A. R. Teixeira, C. C. Chang, T. Coogan, R. Kendall, W. Fan, and P. J. Dauenhauer, "Dominance of surface barriers in molecular transport through silicalite-1", J. Phys. Chem. C., 117, (2013).
  41. M. Fasano, T. Humplik, A. Bevilacqua, M. Tsapatsis, E. Chiavazzo, E. N. Wang, and P. Asinari, "Interplay between hydrophilicity and surface barriers on water transport in zeolite membranes", Nat. Commun., 7, 12762 (2016).
  42. G. Ye, Z. Guo, Y. Sun, K. Zhu, H. Liu, X. Zhou, and M. O. Coppens, "Probing the Nature of Surface Barriers on ZSM-5 by Surface Modification", Chemie-Ingenieur-Technik., 89, 1333-1342 (2017). https://doi.org/10.1002/cite.201700081
  43. F. Hibbe, C. Chmelik, L. Heinke, S. Pramanik, J. Li, D. M. Ruthven, D. Tzoulaki, and J. Karger, "The nature of surface barriers on nanoporous solids explored by microimaging of transient guest distributions", J. Am. Chem. Soc., 133, 2804-2807 (2011). https://doi.org/10.1021/ja108625z
  44. B. C. Bukowski, F. A. Son, Y. Chen, L. Robison, T. Islamoglu, R. Q. Snurr, and O. K. Farha, "Insights into Mass Transfer Barriers in MetalOrganic Frameworks", Chem. Mater., 34, 4134-4141 (2022). https://doi.org/10.1021/acs.chemmater.2c00462
  45. L. Heinke, Z. Gu, and C. Woll, "The surface barrier phenomenon at the loading of metal-organic frameworks", Nat. Commun., 5, 4562 (2014).
  46. S. Park and H. K. Jeong, "Highly H2O permeable ionic liquid encapsulated metal-organic framework membranes for energy-efficient air-dehumidification", J. Mater. Chem. A., 8, 23645-23653 (2020). https://doi.org/10.1039/d0ta07780a
  47. A. Knebel, B. Geppert, K. Volgmann, D. I. Kolokolov, A. G. Stepanov, J. Twiefel, P. Heitjans, D. Volkmer, and J. Caro, "Defibrillation of soft porous metal-organic frameworks with electric fields" Science, 358, 347-351 (2017). https://doi.org/10.1126/science.aal2456
  48. D. J. Babu, G. He, J. Hao, M. T. Vahdat, P. A. Schouwink, M. Mensi, and K. V. Agrawal, "Restricting lattice flexibility in polycrystalline metal-organic framework membranes for carbon capture", Adv. Mater., 31, 6-11 (2019).
  49. J. Hao, D. J. Babu, Q. Liu, P. A. Schouwink, M. Asgari, W. L. Queen, and K. V. Agrawal, "Mechanistic study on thermally induced lattice stiffening of ZIF-8", Chem. Mater., 33, 4035-4044 (2021). https://doi.org/10.1021/acs.chemmater.1c00455
  50. M. J. Lee, H. T. Kwon, and H. K. Jeong, "High-flux zeolitic imidazolate framework membranes for propylene/propane separation by postsynthetic linker exchange", Angew. Chemie - Int. Ed., 57, 156-161 (2018). https://doi.org/10.1002/anie.201708924
  51. K. Eum, M. Hayashi, M. D. De Mello, F. Xue, H. T. Kwon, and M. Tsapatsis, "ZIF-8 membrane separation performance tuning by vapor phase ligand treatment", Angew. Chemie Int. Ed., 58, 16390-16394 (2019). https://doi.org/10.1002/anie.201909490
  52. L. Lang, F. Banihashemi, J. B. James, J. Miao, and J. Y. S. Lin, "Enhancing selectivity of ZIF-8 membranes by short-duration postsynthetic ligandexchange modification", J. Memb. Sci., 619, 118743
  53. J. B. James, L. Lang, L. Meng, and J. Y. S. Lin, "Postsynthetic modification of ZIF-8 membranes via membrane surface ligand exchange for light hydrocarbon gas separation enhancement", ACS Appl. Mater. Interfaces, 12, 3893-3902 (2020). https://doi.org/10.1021/acsami.9b19964
  54. Y. Wang, H. Jin, Q. Ma, K. Mo, H. Mao, A. Feldhoff, X. Cao, Y. Li, F. Pan, and Z. Jiang, "A MOF Glass Membrane for Gas Separation", Angew. Chemie - Int. Ed., 59, 4365-4369 (2020). https://doi.org/10.1002/anie.201915807
  55. P. Su, H. Tang, M. Jia, Y. Lin, and W. Li, "Vapor linker exchange of partially amorphous metal-organic framework membranes for ultra-selective gas separation", AIChE J., 68, (2022).
  56. E. Choi, S.J. Hong, Y. J. Kim, S. E. Choi, Y. Choi, J. H. Kim, J. Kang, O. Kwon, K. Eum, B. Han, and D. W. Kim, "Pore tuning of metal-organic framework membrane anchored on graphene-oxide nanoribbon", Adv. Funct. Mater., 31, 2011146 (2021).
  57. O. Kwon, M. Kim, E. Choi, J. H. Bae, S. Yoo, J. C. Won, Y. H. Kim, J. H. Shin, J. S. Lee, and D. W. Kim, "High-aspect ratio zeolitic imidazolate framework (ZIF) nanoplates for hydrocarbon separation membranes", Sci. Adv., 8, eabl6841 (2022).
  58. C. Yu, Y. J. Kim, J. Kim, M. Hayashi, D. W. Kim, H. T. Kwon, and K. Eum, "A sacrificial ZIF-L seed layer for sub-100 nm thin propylene-selective ZIF-8 membranes", J. Mater. Chem. A., 10, 15390-15394 (2022). https://doi.org/10.1039/D2TA02691K
  59. E. Choi, S. J. Hong, J. Chen, Y. J. Kim, Y. Choi, O. Kwon, K. Eum, J. Il Choi, S. S. Jang, B. Han, and D. W. Kim, "CO2-selective zeolitic imidazolate framework membrane on graphene oxide nanoribbons: Experimental and theoretical studies", J. Mater. Chem. A., 9, 25595-25602 (2021). https://doi.org/10.1039/D1TA08340F