• 제목/요약/키워드: Post-flame Region

검색결과 18건 처리시간 0.02초

CH4/Air 예혼합화염의 하류영역에서 체류시간 및 열손실에 의한 NOx의 생성특성 (The Effect of Residence Time and Heat Loss on NOx Formation Characteristics in the Downstream Region of CH4/Air Premixed Flame)

  • 황철홍;현승호;탁영조;이창언
    • 대한기계학회논문집B
    • /
    • 제31권1호
    • /
    • pp.99-108
    • /
    • 2007
  • In this study, the NOx formation characteristics of one-dimensional $CH_4$/Air premixed flame using detailed-kinetic chemistry are examined numerically. The combustor length and the amount of heat loss are varied to investigate the effect of residence time and heat loss on the NOx formation in a post-flame region. In the flame region, NO is mainly produced by the Prompt NO mechanism including $N_2$O-intermediate NO mechanism over all equivalence ratios. However, thermal NO mechanism is more important than Prompt NO mechanism in the post-flame region. In the case of adiabatic condition, the increase of combustor length causes the remarkable increase of NO emission at the exit due to the increase of residence time. On the other hand, NO reaches the equilibrium state in the vicinity of flame region, considering radiation and conduction heat losses. Furthermore the NO, in the case of $\phi$=1.2, is gradually reduced in the downstream region as the heat loss is increased. From these results, it can be concluded that the controls of residence time and heat loss in a combustor should be recognized as an important NOx reduction technology.

이산화탄소가 첨가된 제트확산화염 후류에서의 매연 특성 (The Characteristics of Soot at the Post-Flame Region in Jet Diffusion Flames Added Carbon Dioxide)

  • 지정훈;이의주
    • 한국안전학회지
    • /
    • 제25권6호
    • /
    • pp.9-13
    • /
    • 2010
  • An experimental study for characteristics of soot were conducted at the post-flame region in jet diffusion flames, where carbon dioxide was used as additives in oxidizer stream. Light-extinction method was performed using He-Ne laser with wave length at 632.8nm for the measurement of relative soot density and soot volume fraction with dimensionless extinction coefficient, $K_e$ and mass specific extinction coefficient, ${\sigma}_s$. To increase of resolution, laser light was modified for sheet-form using concave, convex lenses and slit. C/H ratio was introduced for quantitative analysis of soot growth which is expressed by carbonization and dehydrogen. Also transmission electron microscopy(TEM) was used for observation of morphological shape. The results show that the relative soot density in the post-flame region was lower when carbon dioxide was added in oxidizer stream because of reduction of flame temperature.

예혼합 화염후류에서 열전달이 CO 및 NOx 생성 특성에 미치는 영향 (Effect of Heat Loss on CO and NOx Emission Characteristics in the Postflame Region of Premixed Flames)

  • 김종민;김태현;금성민;김세원;장기현;이창언
    • 한국연소학회지
    • /
    • 제13권4호
    • /
    • pp.1-7
    • /
    • 2008
  • Strict pollutant regulations of NOx emission and increasing awareness of the environmental damage stimulated interest in research to obtain useful information regarding CO and NOx reductions at the same time. In this study, $CH_4$/air premixed flame was examined numerically to reduce CO and NOx emission level simultaneously in the post-flame region by the heat loss models in which radiative and combined conductive and convective heat losses were included. To reduce the NOx emission, first heat exchanger location was decided near the flame. After first heat exchanger was decided for the optimal NOx emission(about 30 ppm), in order to decide the optimal CO emission(about 30ppm), seocond heat exchanger location was tested and decided for several cases. Finally, the optimal location of heat exchanger for minimal CO and NOx emission simultaneously were determined and suggested.

  • PDF

마이크로파가 인가된 화염에서의 주파수 특성과 오염물질 생성 (Flickering Frequency and Pollutants Formation in Microwave Induced Diffusion Flames)

  • 전영훈;이의주
    • 한국안전학회지
    • /
    • 제31권3호
    • /
    • pp.22-27
    • /
    • 2016
  • The use of electromagnetic wave has been interested in various energy industry because it enhances a flame stability and provides higher safety environments. However it might increase the pollutant emissions such as NOx and soot, and have harmful influence on human and environments. Therefore, it is very important to understand interaction mechanism between flame and electromagnetic wave from environmental point of view. In this study, an experiment was performed with jet diffusion flames induced by electromagnetic wave. Microwave was used as representative electromagnetic wave and a flickering flame was introduced to simulate the more similar combustion condition to industry. The results show that the induced microwave enhances the flame stability and blowout limit. The unstable lifted flickering flames under low fuel/oxidizer velocity is changed to stable attached flames or lift-off flames when microwave applied to the flames, which results from the abundance of radical pool. However, NOx emission was increased monotonically with increasing the microwave power as microwave power increased up to 1.0 kW. The effects might be attributed to the heating of combustion field and thermal NOx mechanism will be prevailed. Soot particle was examined at the post flame region by TEM grid. The morphology of soot particle sampled in the microwave induced flames was similar to the incipient soot that is not agglomerated and contain a lots of liquid phase hydrocarbon such as PAH, which soot particle formed near reaction zone is oxidized on the extended yellow flame region and hence only unburned young particles are emitted on the post flame region.

LIIM(Laser-Induced Ion Mobility) 계측을 이용한 매연 나노입자 측정 (Measurement of Soot Nano-Particle Using LIIM(Laser-Induced Ion Mobility))

  • 이의주
    • 대한기계학회논문집B
    • /
    • 제28권9호
    • /
    • pp.1110-1116
    • /
    • 2004
  • Experimental measurements of laser-induced ion mobility(LIIM) were performed for ethene/air premixed flames operated near the soot inception point. Soot was ionized using a pulsed laser operated at 532 nm. The ionization signal was collected with a tungsten electrode located in the post-flame region. ionization signals were collected using both a single electrode and dual electrode configuration. Prior LIIM studies have focused on the use of a single biased electrode to generate the electric field, with the burner head serving as the path to ground. In many practical combustion systems, a path to ground is not readily available. To apply the LIIM diagnostic to these geometries, a dual electrode geometry must be employed. The influence of electrode configuration, flame equivalence ratio, and flame height on ionization signal detection was determined. The efficacy of the LIIM diagnostic to detect soot inception in the post-flame region of a premixed flame using a dual electrode configuration was investigated. For the different dual electrode configurations tested, the dual parallel electrode geometry was observed to be most sensitive to detect the soot inception point in a premixed flame.

메탄 마이크로 제트화염의 부상과 NOx 배출에 대한 마이크로파 효과 (Effects of Microwave Induction on the Liftoff and NOx Emission in Methane Micro Jet Flames)

  • 전영훈;이의주
    • 한국연소학회지
    • /
    • 제21권2호
    • /
    • pp.22-28
    • /
    • 2016
  • High efficient and environment friendly combustion technologies are used to be operated an extreme condition, which results in unintended flame instability such as extinction and oscillation. The use of electromagnetic energy is one of methods to enhance the combustion stability and a microwave as electromagnetic wave is receiving increased attention recently because of its high performance and low-cost system. In this study, an experiment was performed with jet diffusion flames induced by microwave. Micro jet was introduced to simulate the high velocity of industrial combustor. The results show that micro jet flames had three different modes with increasing oxidizer velocity; attached yellow flame, lifted flame, and lifted partially premixed flame. As a microwave was induced to flames, the overall flame stability and blowout limit were extended with the higher microwave power. Especially the interaction between a flame and a microwave was shown clearly in the partially premixed flame, in which the lift-off height decreased and NOx emission measured in post flame region increased with increasing microwave power. It might be attributed to increase of reactivity due to the abundance of radical pool and the enhanced absorption to thermal energy.

Application of DFB Diode Laser Sensor to Reacting Flow (II) - Liquid-Gas 2-Phase Reacting Flow -

  • Park, Gyung-Min;Masashi Katsuki;Kim, Duck-Jool
    • Journal of Mechanical Science and Technology
    • /
    • 제17권1호
    • /
    • pp.139-145
    • /
    • 2003
  • Diode laser sensor is conducted to measure the gas temperature in the liquid-gas 2-phase counter flow flame. C$\_$10/H/ sub 22/ and city gas were used as liquid fuel and gas fuel, respectively. Two vibrational overtones of H$_2$O were selected and measurements were carried out in the spray flame region stabilized the above gaseous premixed flame. The path-averaged temperature measurement using diode laser absorption method succeeded in the liquid fuel combustion environment regardless of droplets of wide range diameter. The path-averaged temperature measured in the post flame of liquid-gas 2-phase counter flow flame showed qualitative reliable results. The successful demonstration of time series temperature measurement in the liquid-gas 2-phase counter flow flame gave us motivation of trying to establish the effective control system in practical combustion system. These results demonstrated the ability of real-time feedback from combustor inside using the non-intrusive measurement as well as the possibility of application to practical combustion system. Failure case due to influence of spray flame was also discussed.

나노-마이크로 알루미늄 혼합 입자의 공기와의 연소 모델링 (Combustion Modeling of Nano/Micro Aluminum Particle Mixture)

  • 윤시경;신준수;성홍계
    • 한국추진공학회지
    • /
    • 제15권6호
    • /
    • pp.15-25
    • /
    • 2011
  • 금속 연료 중 널리 사용되는 알루미늄의 연소 특성에 관하여 1차원 연소모델링을 제안하였다. 연소 모델링은 예열영역, 반응영역, 반응 후 영역, 세 영역으로 나누어 수행하였다. 또한 희박연소로 가정하여 단일 입자의 경우 입자크기와 당량비에 따른 화염속도, 나노와 마이크로 입자의 혼합물의 경우 혼합 비율에 따른 화염속도를 압력이 1기압 조건에서 계산하여 실험결과와 비교하였다. 단일입자의 경우, 입자의 크기가 작아질수록 화염속도가 빨라지고, 당량비가 낮아질수록 화염속도가 느려지는 현상이 관찰되었다. 나노와 마이크로 입자의 혼합물의 경우, 나노 입자의 함유량에 따라 화염속도는 빨라지며, 화염구조는 분리화염과 중첩화염이 나타남이 관찰되었다.

수직 배관 내의 농도변화에 따른 분진폭발 특성 (Characteristics of Flames Propagating Through Combustible Particles Concentration in a Vertical Duct)

  • 한우섭;한인수;최이락;이정석;이수희
    • Korean Chemical Engineering Research
    • /
    • 제49권1호
    • /
    • pp.41-46
    • /
    • 2011
  • 본 연구에서는 수직 배관 내에서 석송자 농도 변화에 따른 분진화염전파 특성을 상세히 조사하였다. 이를 위해 디지털비디오카메라와 PIV(Particle Image Velocimetry)를 사용하여 높이 120 cm, 단면 12 cm의 정방형 수직 덕트 내를 전파하는 분진화염의 입자거동을 해석하였다. 그 결과, 배관 내에 동일 평균농도의 분진운이 존재하는 경우 상방전파보다 하방 전파에 의한 화염전파속도가 크며 농도 약 300 g/$m^3$까지의 경우에는 분진농도가 증가할수록 그 비율이 증가하였다. 후방 화염(Post flame)은 배관 측벽과 화염면 사이를 통과하여 전파화염 후방에 유입된 미연소 입자의 발화에 의한 것으로 배관의 밀폐조건과 관계없이 발생하였다. 또한 후방 화염의 발생 빈도는 농도의 증가와 함께 증가하는 것을 알았다.