• Title/Summary/Keyword: Post-Failure Analysis

Search Result 272, Processing Time 0.023 seconds

Strength Analysis of Mark III Cargo Containment System using Anisotropic Failure Criteria

  • Jeong, Han Koo;Yang, Young Soon
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.4
    • /
    • pp.211-226
    • /
    • 2015
  • Membrane type Mark III cargo containment system (CCS) is considered in this study to investigate its strength capability under applied loads due to liquefied natural gas (LNG) cargo. A rectangular plated structure supported by inner hull structure is exemplified from Mark III CCS according to classification society's guidance and it is assumed as multi-layered structure by stacking plywood, triplex, reinforced polyurethane (PU) foam and series of mastic upon inner hull structure. Commercially available general purpose finite element analysis package is used to have reliable FE models of Mark III CCS plate. The FE models and anisotropic failure criteria such as maximum stress, Hoffman, Hill, Tsai-Wu and Hashin taking into account the direction dependent material properties of Mark III CCS plate components and their material properties considering a wide variation of temperature due to the nature of LNG together form the strength analysis procedure of Mark III CCS plate. Strength capability of Mark III CCS plate is understood by its initial failure and post-initial failure states. Results are represented in terms of failure loads and locations when initial failure and post-initial failures are occurred respectively. From the results the basic design information of Mark III CCS plate is given.

Analysis of post-failure response of sands using a critical state micropolar plasticity model

  • Manzari, Majid T.;Yonten, Karma
    • Interaction and multiscale mechanics
    • /
    • v.4 no.3
    • /
    • pp.187-206
    • /
    • 2011
  • Accurate estimations of pre-failure deformations and post-failure responses of geostructures require that the simulation tool possesses at least three main ingredients: 1) a constitutive model that is able to describe the macroscopic stress-strain-strength behavior of soils subjected to complex stress/strain paths over a wide range of confining pressures and densities, 2) an embedded length scale that accounts for the intricate physical phenomena that occur at the grain size scale in the soil, and 3) a computational platform that allows the analysis to be carried out beyond the development of an initially "contained" failure zone in the soil. In this paper, a two-scale micropolar plasticity model will be used to incorporate all these ingredients. The model is implemented in a finite element platform that is based on the mechanics of micropolar continua. Appropriate finite elements are developed to couple displacement, micro-rotations, and pore-water pressure in form of $u_n-{\phi}_m$ and $u_n-p_m-{\phi}_m$ (n > m) elements for analysis of dry and saturated soils. Performance of the model is assessed in a biaxial compression test on a slightly heterogeneous specimen of sand. The role of micropolar component of the model on capturing the post-failure response of the soil is demonstrated.

Optimum Shape for Buckling and Post-Buckling Behavior of a Laminated Composite Panel with I-type Stiffeners

  • Lee, Gwang-Rog;Yang, Won-Ho;Sub, Myung-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1211-1221
    • /
    • 2002
  • A shape optimization of stiffener was conducted to increase buckling load or failure load with stiffened laminated composite panel of I-type under compression loading. Design variables are cap length, web length, and/or thickness under the constraint of volume constancy. The objective function is buckling load and failure load of post-buckling based on Tsai-Hill theory using ABAQUS 5.8 for analysis and Optimizer on Broydon-Fletcher Goldfarb-Sharno Method and Augmented Lagrange Multiplier Method. The effects of relative length of a web and a cap of stiffener on buckling load and failure load of post-buckling were investigated with the results of optimum design.

Computed Tomography Findings Associated with Treatment Failure after Antibiotic Therapy for Acute Appendicitis

  • Wonju Hong;Min-Jeong Kim;Sang Min Lee;Hong Il Ha;Hyoung-Chul Park;Seung-Gu Yeo
    • Korean Journal of Radiology
    • /
    • v.22 no.1
    • /
    • pp.63-71
    • /
    • 2021
  • Objective: To identify the CT findings associated with treatment failure after antibiotic therapy for acute appendicitis. Materials and Methods: Altogether, 198 patients who received antibiotic therapy for appendicitis were identified by searching the hospital's surgery database. Selection criteria for antibiotic therapy were uncomplicated appendicitis with an appendiceal diameter equal to or less than 11 mm. The 86 patients included in the study were divided into a treatment success group and a treatment failure group. Treatment failure was defined as a resistance to antibiotic therapy or recurrent appendicitis during a 1-year follow-up period. Two radiologists independently evaluated the following CT findings: appendix-location, involved extent, maximal diameter, thickness, wall enhancement, focal wall defect, periappendiceal fat infiltration, and so on. For the quantitative analysis, two readers independently measured the CT values at the least attenuated wall of the appendix by drawing a round region of interest on the enhanced CT (HUpost) and non-enhanced CT (HUpre). The degree of appendiceal wall enhancement (HUsub) was calculated as the subtracted value between HUpost and HUpre. A logistic regression analysis was used to identify the CT findings associated with treatment failure. Results: Sixty-four of 86 (74.4%) patients were successfully treated with antibiotic therapy, with treatment failure occurring in the remaining 22 (25.5%). The treatment failure group showed a higher frequency of hypoenhancement of the appendiceal wall than the success group (31.8% vs. 7.8%; p = 0.005). Upon quantitative analysis, both HUpost (46.7 ± 21.3 HU vs. 58.9 ± 22.0 HU; p = 0.027) and HUsub (26.9 ± 17.3 HU vs. 35.4 ± 16.6 HU; p = 0.042) values were significantly lower in the treatment failure group than in the success group. Conclusion: Hypoenhancement of the appendiceal wall was significantly associated with treatment failure after antibiotic therapy for acute appendicitis.

Assessment of Post-Earthquake Fire Behavior of a Steel MRF Building in a Low Seismic Region

  • Chicchi, Rachel;Varma, Amit
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1470-1481
    • /
    • 2018
  • Building-level response to post-earthquake fire hazards in steel buildings has been assessed using primarily two-dimensional analyses of the lateral force resisting system. This approach may not adequately consider potential vulnerabilities in the gravity framing system. For this reason, three-dimensional (3D) finite element models of a 10-story case study building with perimeter moment resisting frames were developed to analyze post-earthquake fire events and better understand building response. Earthquakes are simulated using ground motion time histories, while Eurocode parametric time-temperature curves are used to represent compartment fires. Incremental dynamic analysis and incremental fire analysis procedures capture a range of hazard intensities. Findings show that the structural response due to earthquake and fire hazards are somewhat decoupled from one another. Regardless of the level of plastic hinging present in the moment framing system due to a seismic event, gravity column failure is the initiating failure mode in a fire event.

Modelling of bonded and unbonded post-tensioned concrete flat slabs under flexural and thermal loading

  • Mohammed, Abbas H.;Taysi, Nildem
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.595-606
    • /
    • 2017
  • During their life span, post-tensioned concrete structures may be exposed to thermal loads. Therefore, there has been a growing interest in research on the advanced analysis and design of post-tensioned concrete slabs subjected to thermal loads. This paper investigates the structural behaviour of post-tensioned one-way spanning concrete slabs. A nonlinear finite element model for the analysis of post- tensioned unbonded and bonded concrete slabs at elevated temperatures was developed. The interface between the tendon and surrounding concrete was also modelled, allowing the tendon to retain its profile shape during the deformation of the slab. The load-deflection behaviour, load-force behaviour in the tendon, and the failure modes are presented. The numerical analysis was conducted by the finite element ANSYS software and was carried out on two different one-way concrete slabs chosen from literature. A parametric study was conducted to investigate the effect of several selected parameters on the overall behavior of post-tensioned one-way concrete slab. These parameters include the effect of tendon bonding, the effect of thermal loading and the effect of tendon profile. Comparison between uniform thermal loading and nonuniform thermal loading showed that restrained post tensioned slab with bottom surface hotter has smaller failure load capacity.

Influence of Malalignment on Tibial Post in Total Knee Replacement Using Posterior Stabilized Implant (슬관절 전치환술에서 후방 안정 임플란트의 오정렬이 경골 기둥에 미치는 영향)

  • Kim, Sang-Hoon;Ahn, Ok-Kyun;Bae, Dae-Kyung;Kim, Yoon-Hyuk;Kim, Kyung-Soo;Lee, Soon-Gul
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.1
    • /
    • pp.108-116
    • /
    • 2007
  • Recently, it has been reported that the posterior stabilized implant, which is clinically used for the total knee replacement (TKR), may have failure risk such as wear or fracture by the contact pressure and stress on the tibial post. The purpose of this study is to investigate the influence of the mal alignment of the posterior stabilized implant on the tibial post by estimating the distributions of contact pressure and von-Mises stress on a tibial post and to analyze the failure risk of the tibial post. Finite element models of a knee joint and an implant were developed from 1mm slices of CT images and 3D CAD software, respectively. The contact pressure and the von-Mises stress applying on the implant were analyzed by the finite element analysis in the neutral alignment as well as the 8 malalignment cases (3 and 5 degrees of valgus and varus angulations, and 2 and 4 degrees of anterior and posterior tilts). Loading condition at the 40% of one whole gait cycle such as 2000N of compressive load, 25N of anterior-posterior load, and 6.5Nm of torque was applied to the TKR models. Both the maximum contact pressure and the maximum von-Mises stress were concentrated on the anterior-medial region of the tibial post regardless of the malalignment, and their magnitudes increased as the degree of the malalignment increased. From present result, it is shown that the malalignment of the implant can influence on the failure risk of the tibial post.

A comparative evaluation of fracture resistance of endodontically treated teeth restored with different post core systems - an in-vitro study

  • Makade, Chetana S.;Meshram, Ganesh K.;Warhadpande, Manjusha;Patil, Pravinkumar G.
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.2
    • /
    • pp.90-95
    • /
    • 2011
  • PURPOSE. To compare the fracture resistance and the mode of failure of endodontically treated teeth restored with different post-core systems. MATERIALS AND METHODS. Root canal treatment was performed on 40 maxillary incisors and the samples were divided into four groups of 10 each. For three experimental groups post space preparation was done and teeth were restored with cast post-core (Group B), stainless steel post with composite core (Group C) and glass fiber post with composite core using adhesive resin cement (Group D). Control group (A) samples were selected with intact coronal structure. All the samples were prepared for ideal abutment preparation. All the samples were subjected to a load of 0.5 mm/min at $130^{circ}$.until fracture occurred using the universal testing machine. The fracture resistance was measured and the data were analyzed statistically. The fracture above the embedded resin was considered to be favorable and the fracture below the level was considered as unfavorable. The statistical analysis of fracture resistance between different groups was carried out with t-test. For the mode of failure the statistical analysis was carried out by Kruskal-Wallis test and Chi-Square test. RESULTS. For experimental group Vs control group the fracture resistance values showed significant differences (P<.05). For the mode of failure the chi-square value is 16.1610, which means highly significant (P=.0009) statistically. CONCLUSION. Endodontically treated teeth without post core system showed the least fracture resistance demonstrating the need to reinforce the tooth. Stainless steel post with composite core showed the highest fracture resistance among all the experimental groups. Teeth restored with the Glass fiber post showed the most favorable fractures making them more amenable to the re-treatment.

Non-linear time-dependent post-elastic analysis of suspended cable considering creep effect

  • Kmet, S.;Tomko, M.;Brda, J.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.2
    • /
    • pp.197-222
    • /
    • 2006
  • In this paper, the non-linear time-dependent closed-form, discrete and combined solutions for the post-elastic response of a geometrically and physically non-linear suspended cable to a uniformly distributed load considering the creep effects, are presented. The time-dependent closed-form method for the particularly straightforward determination of a vertical uniformly distributed load applied over the entire span of a cable and the accompanying deflection at time t corresponding to the elastic limit and/or to the elastic region, post-elastic and failure range of a suspended cable is described. The actual stress-strain properties of steel cables as well as creep of cables and their rheological characteristics are considered. In this solution, applying the Irvine's theory, the direct use of experimental data, such as the actual stress-strain and strain-time properties of high-strength steel cables, is implemented. The results obtained by the closed-form solution, i.e., a load corresponding to the elastic limit, post-elastic and failure range at time t, enable the direct use in the discrete non-linear time-dependent post-elastic analysis of a suspended cable. This initial value of load is necessary for the non-linear time-dependent elastic and post-elastic discrete analysis, concerning incremental and iterative solution strategies with tangent modulus concept. At each time step, the suspended cable is analyzed under the applied load and imposed deformations originated due to creep. This combined time-dependent approach, based on the closed-form solution and on the FEM, allows a prediction of the required load that occurs in the post-elastic region. The application of the described methods and derived equations is illustrated by numerical examples.

A Parameter Study on the Shear Failure Behavior of Post-installed Set Anchor for Light Load (저하중용 후설치 세트앵커의 전단파괴거동에 관한 매개변수 연구)

  • Um, Chan-Hee;Yoo, Seung-Woon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.55-63
    • /
    • 2015
  • Post-installed concrete set anchors are installed after the concrete hardened. These anchors increasing usage in development of construction equipment and flexible construction. The anchor loaded in shearing exhibits various failure modes such as steel failure, concrete failure, concrete pryout, depending on the shear strength of steel, the strength of concrete, edge distance and anchor interval, etc,. In this study, the objective is to investigate the effects of the variations like anchor embedment depth, edge distance and concrete strength on experimental and finite element analysis of shear failure behavior of post-installed concrete set anchor for light load embedded in concrete. The results of embedment depth experiments show that concrete strength has much affection on the shallow embedment depth. Concrete strength has no much affection with anchor interval and edge distance parameter and both experimental results occurred same failure mode. By comparing the experimental results that occurred steel failure mode show that as strong as concrete strength are the displacement results are small.