• Title/Summary/Keyword: Post tensioned

Search Result 196, Processing Time 0.024 seconds

Experimental Evaluation for Ultimate Flexural Behaviors of PSC beams with A Corroded Tendon (PS강연선이 부식된 PSC보의 극한휨거동 평가실험)

  • Youn, Seok-Goo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.843-854
    • /
    • 2013
  • This paper presents experimental research work for the evaluation of ultimate flexural behaviors of prestressed concrete beams with a corroded tendon. In order to evaluate the effects of loss of prestress or loss of tendon area on the ultimate flexural strength of prestressed concrete beams, static load tests are conducted using five prestressed concrete beams. After exposing prestressing tendons in two test beams using 25mm drill bit, the exposed tendons were corroded using an accelerating corrosion equipment to simulate loss of tendon area. During the tests, steel strains, concrete strains and displacements at the center of test beams were measured, and acoustic emission measurements were conducted to detect wire fractures. Based on the test results, evaluation method for predicting flexural strength of prestressed concrete beams with corroded tendons is investigated. In addition, evaluation methods for predicting the existence of corroded tendons in post-tensioned prestressed concrete beams at service loads are discussed.

Generalized Analysis of RC and PT Flat Plates Using Limit State Model (한계상태모델을 이용한 철근콘크리트와 포스트텐션 무량판의 통합해석)

  • Kang, Thomas H.K.;Rha, Chang-Soon
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.599-609
    • /
    • 2009
  • This paper discusses generalized modeling schemes for both reinforced concrete (RC) and post-tensioned (PT) flat plate buildings. In this modeling approach, nonlinear behavior due to slab flexure, moment and shear transfer at slab-column connections, and punching shear was included along with linear secant stiffness of each member or connection that accounts for concrete cracking. This generalized model was capable of simulating all different scenarios of slab-column connection failures such as brittle punching, flexure-shear interactive failure, and flexural failure followed by drift-induced punching. Furthermore, automatic detection of drift-induced punching shear and subsequent backbone curve modifications were realistically modelled by incorporating the limit state model, in which gravity shear versus drift capacity relations were adopted. The validation of the model was conducted using one-third scale two-story by two-bay RC and PT flat plate frames. The comparisons revealed that the model was robust and effective.

Effects of Motor Learning Guided Laryngeal Motor Control Therapy for Muscle Misuse Dysphonia (운동학습이론에 기초한 발성운동조절법이 근오용성 발성장애의 음성에 미치는 효과)

  • Seo, In-Hyo;Lee, Ok-Bun;Lee, Sang-Joon;Chung, Phil-Sang
    • Phonetics and Speech Sciences
    • /
    • v.3 no.3
    • /
    • pp.133-140
    • /
    • 2011
  • Muscle misuse dysphonia (MMD) is defined as a behavioral voice disorder resulting from inappropriate contractions of intrinsic and/or extrinsic laryngeal muscles. The purpose of this study was to investigate the effect of motor learning guided laryngeal motor control therapy (MLG-LMCT) which is designed to improve an existing LMT and further the effective voice treatment on people with muscle misuse dysphonia. Forty-six people with MMD (M:F=16:30) participated in this study. The voice samples of the participants were recorded to investigate the effect of MLG-LMCT before and after the voice therapy. Voice samples were analyzed via electro-glotto-graph (EGG). Contact quotient (CQ), speed quotient (SQ), and waveform were reported. In addition, perceptual and acoustical evaluation were conducted to determine the change of voice improvement after treatment. The experimenter massaged the tensioned muscles around the neck. In order to find more proper phonation the experimenter showed the subjects their EGG wave forms as to whether or not they are moving the vocal folds to the appropriate position. Therefore, the EGG wave forms were used as a type of visual feedback. With the wave form, the experimenter helped subjects move the vocal folds and laryngeal muscles to find more proper voice production. The sensory stimuli from the experimenter gradually faded out. A paired dependent t- test revealed that there was significant differences in CQ between pre- and post-therapy. Perceptually, overall, rough, breathy, strain, and transition were significantly reduced. Acoustically, there were significant differences in Fo, jitter, shimmer, and NHR. After using MLG-LMCT, most of the subjects showed improvements in voice quality. The results from this study led us to the following conclusions: Motor learning guided laryngeal motor control therapy (MLG-LMCT) has reduces muscle misuse dysphonia. These results may occur because a visual feedback from EGG wave form can maintain the effect of the muscle tension reduction from laryngeal manual therapy. In case of people with MMD who reduced muscle tension from the therapy (LMT) but, not appropriately manipulating the location of larynx or adducting the vocal folds, MLG-LMCT might be an alternative therapy approach.

  • PDF

Flexural Strength Evaluation of PSC Beam with Loss of PS Tendon Area (PS강재의 단면적 감소에 따른 PSC보의 휨강도 평가)

  • Park, Soon-Hyung;Kim, Yong-Tae;Youn, Seok-Goo;Kim, Eun-Kyum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.309-312
    • /
    • 2008
  • This paper describes ultimate load tests which were performed to show the effects of prestress loss and tendon corrosion on the flexural strength of post-tensioned concrete beams and the occurrence of wire fracture. Five test specimens were fabricated in laboratory with the variations of the prestress of tendons and the loss of tendon area. For two specimens, small area of tendon at the center of the beam was exposed by using diameter 25mm drill and the exposed tendon was corroded using accelerated corrosion equipment. During the tests, deflections, crack width, and strain changes were measured and acoustic events were monitored with two acoustic sensors. Tests results show that the ultimate flexural strength of test specimens with corroded tendons is smaller than the predicted flexural strength which is calculated considering the loss of tendon area. It is considered that estimation of flexural strength of PSC beams with corroded tendons is very complicated just based on the loss of tendon area obtained by one-side visual inspection.

  • PDF

Experimental, numerical and analytical studies on a novel external prestressing technique for concrete structural components

  • Lakshmanan, N.;Saibabu, S.;Murthy, A. Rama Chandra;Ganapathi, S. Chitra;Jayaraman, R.;Senthil, R.
    • Computers and Concrete
    • /
    • v.6 no.1
    • /
    • pp.41-57
    • /
    • 2009
  • This paper presents the details of a novel external prestressing technique for strengthening of concrete members. In the proposed technique, transfer of external force is in shear mode on the end block thus creating a complex stress distribution and the required transverse prestressing force is lesser compared to conventional techniques. Steel brackets are provided on either side of the end block for transferring external prestressing force and these are connected to the anchor blocks by expansion type anchor bolts. In order to validate the technique, an experimental investigation has been carried out on post-tensioned end blocks. Performance of the end blocks have been studied for design, cracking and ultimate loads. Slip and slope of steel bracket have been recorded at various stages during the experiment. Finite element analysis has been carried out by simulating the test conditions and the responses have been compared. From the analysis, it has been observed that the computed slope and slip of the steel bracket are in good agreement with the corresponding experimental observations. A simplified analytical model has been proposed to compute load-deformation of the loaded steel bracket with respect to the end block. Yield and ultimate loads have been arrived at based on force/moment equilibrium equations at critical sections. Deformation analysis has been carried out based on the assumption that the ratio of axial deformation to vertical deformation of anchor bolt would follow the same ratio at the corresponding forces such as yield and ultimate. It is observed that the computed forces, slip and slopes are in good agreement with the corresponding experimental observations.

The multi-axial testing system for earthquake engineering researches

  • Lin, Te-Hung;Chen, Pei-Ching;Lin, Ker-Chun
    • Earthquakes and Structures
    • /
    • v.13 no.2
    • /
    • pp.165-176
    • /
    • 2017
  • Multi-Axial Testing System (MATS) is a 6-DOF loading system located at National Center for Research on Earthquake Engineering (NCREE) in Taiwan for advanced seismic testing of structural components or sub-assemblages. MATS was designed and constructed for a large variety of structural testing, especially for the specimens that require to be subjected to vertical and longitudinal loading simultaneously, such as reinforced concrete columns and lead rubber bearings. Functionally, MATS consists of a high strength self-reacting frame, a rigid platen, and a large number of servo-hydraulic actuators. The high strength self-reacting frame is composed of two post-tensioned A-shape reinforced concrete frames interconnected by a steel-and-concrete composite cross beam and a reinforced concrete reacting base. The specimen can be anchored between the top cross beam and the bottom rigid platen within a 5-meter high and 3.25-meter wide clear space. In addition to the longitudinal horizontal actuators that can be installed for various configurations, a total number of 13 servo-hydraulic actuators are connected to the rigid platen. Degree-of-freedom control of the rigid platen can be achieved by driving these actuators commanded by a digital controller. The specification and information of MATS in detail are described in this paper, providing the users with a technical point of view on the design, application, and limitation of MATS. Finally, future potential application employing advanced experimental technology is also presented in this paper.

A Study on the Determination of the Optimal Parameter for the Evaluation of the Effective Prestress Force on the Bonded Tendon (부착식 텐던의 유효 긴장력 평가를 위한 최적의 매개변수 결정에 관한 연구)

  • Jang, Jung Bum;Lee, Hong Pyo;Hwang, Kyeong Min;Song, Young Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2A
    • /
    • pp.161-168
    • /
    • 2010
  • The bonded tendon was adopted to the reactor building of some operating nuclear power plants in Korea and the assessment of the effective prestress force on the bonded tendon is being issued as an important pending problem for continuous operation beyond their design life. The sensitivity analysis of various parameters was carried out to evaluate the effective prestress force using the system identification technique and the optimal parameters were determined for SI technique in this study. The 1/5 scaled post-tensioned concrete beams with the bonded tendon type were manufactured and in order to investigate the relationship of the natural frequency and the displacement to the effective prestress force, impact test, SIMO sine sweep test and bending test using the optical fiber sensor and the compact displacement transducer were carried out. As a result of tests, both the natural frequency and the displacement show the good relationship with the effective prestress force and both parameters are available for the SI technique to estimate the effective prestress force.

Behavior of simple precast high-strength concrete beams connected in the maximum bending moment zone using steel extended endplate connections

  • Magdy I. Salama;Jong Wan Hu;Ahmed Almaadawy;Ahmed Hamoda;Basem O. Rageh;Galal Elsamak
    • Steel and Composite Structures
    • /
    • v.50 no.6
    • /
    • pp.627-641
    • /
    • 2024
  • This paper presents an experimental and numerical study to investigate the behavior of the precast segmental concrete beams (PSCBs) utilizing high-strength concrete (HSC) connected in the zone of the maximum bending moment using steel extended endplate connections (EECs). The experimental study consisted of five beams as follows: The first beam was the control beam for comparison, which was an unconnected one-piece beam made of HSC. The other four other beams consisted of two identical pieces of precast concrete. An important point to be noted is that at the end of each piece, a steel plate was used with a thickness of 10 mm. Moreover, this steel plate was welded to the lower and upper reinforcing bars of the beam. Furthermore, the steel plate was made to connect the two pieces using the technique of EECs. Several variables were taken in these four beams, whether from the shape of the connection or enhancing the behavior of the connection using the post-tensioning technique. EECs without stiffeners were used for some of the tested beams. The behavior of these connections was improved using stiffeners and shear bolts. To get accurate results, a comparison was made between the behaviors of the five beams. Another important point to be noted is that Abaqus and SAP2000 programs were used to investigate the behavior of PSCBs and to ensure the accuracy of the modeling process which showed a good agreement with the experimental results. Additionally, the simplified modeling using SAP2000 was able to model the nonlinear behavior of PSCBs connected using steel EECs. It was found that the steel pre-tensioned bolted EECs, reinforced with steel stiffeners and shear anchors, could be used to connect the precast HSC segmental beams via the internal pre-stressing technique.

New Technique for the Reconstruction of Both Anteromedial & Posterolateral Bundles of ACL (전방십자인대의 전내측 다발 및 후외측 다발을 각각 재건하는 새로운 수술 수기)

  • Ha Chul-Won;Awe Soo-Ik
    • Journal of the Korean Arthroscopy Society
    • /
    • v.6 no.2
    • /
    • pp.195-199
    • /
    • 2002
  • This article is to report a new technique for reconstruction of the anteromedial and posterolateral bundles of anterior cruciate ligament by separate tensioning and fixation of the each bundle. Method : Tibial and femoral tunnels were made with conventional technique of anterior cruciate ligament reconstruction. Tibial tunnel was enlarged $5\~7$ mm in anterior-posterior direction to make oval it in cross section. When preparing the Achilles tendon allograft, bone plug portion was trimmed as the conventional technique. The tendinous portion was trimmed as two separate bundles by dividing the tendinous portion longitudinally, so the graft is shaped like 'Y'. The bone plug portion of allograft was inserted into the femoral tunnel and fixed with absorbable cross pins. Two ligamentous portionss of the distal part of the grafts were tensioned separately at the external orifice. Anteromedial bundle was fastened under maximum tension with the knee flexed 90 degrees by post-tie method. The posterolateral bundle was fixed by the same technique with the knee in full extension. Then, an absorbable interference screw was inserted between the two bundles upto the upper end of the tibial tunnel, to get more initial rigidity of the reconstructed graft as well as to locate the two bundles in more anatomic position.

  • PDF

Design and Full Size Flexural Test of Spliced I-type Prestressed Concrete Bridge Girders Having Holes in the Web (분절형 복부 중공 프리스트레스트 콘크리트 교량 거더의 설계 및 실물크기 휨 실험 분석)

  • Han, Man Yop;Choi, Sokhwan;Jeon, Yong-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.235-249
    • /
    • 2011
  • A new form of I-type PSC bridge girder, which has hole in the web, is proposed in this paper. Three different concepts were combined and implemented in the design. First of all, a girder was precast at a manufacturing plant as divided pieces and assembled at the construction site using post-tensioning method, and the construction period at the site will be reduced dramatically. In this way, the quality of concrete can be assured at the manufacturing factory and concrete curing can be well controlled, and the spliced girder segments can be moved to the construction site without a transportation problem. Secondly, a numerous number of holes was made in the web of the girder. This reduces the self-weight of the girder. But more important thing related to the holes is that about half of the total anchorages can be moved from the girder ends into individual holes. The magnitude of negative moment developed at girder ends will be reduced. Also, since the longitudinal compressive stresses are reduced at ends, thick end diaphragm is not necessary. Thirdly, Prestressing force was introduced into the member through multiple stages. This concept of multi-stage prestressing method overcomes the prestressing force limit restrained by the allowable stresses at each loading stage, and maximizes the magnitude of applicable prestressing force. It makes the girder longer and shallower. Two 50 meter long full scale girders were fabricated and tested. One of them was non-spliced, or monolithic girder, made as one piece from the beginning, and the other one was assembled using post-tensioning method from five pieces of segments. It was found from the result that monolithic and spliced girder show similar load-deflection relationships and crack patterns. Girders satisfied specific girder design specification in flexural strength, deflection, and live load deflection control limit. Both spliced and monolithic holed web post-tensioned girders can be used to achieve span lengths of more than 50m with the girder height of 2 m.