• 제목/요약/키워드: Post and core material

검색결과 69건 처리시간 0.023초

Synthesis of Ultra-long Hollow Chalcogenide Nanofibers

  • 좌용호
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.3.1-3.1
    • /
    • 2011
  • Nanoengineered materials with advanced architectures are critical building blocks to modulate conventional material properties or amplify interface behavior for enhanced device performance. While several techniques exist for creating one dimensional heterostructures, electrospinning has emerged as a versatile, scalable, and cost-effective method to synthesize ultra-long nanofibers with controlled diameter (a few nanometres to several micrometres) and composition. In addition, different morphologies (e.g., nano-webs, beaded or smooth cylindrical fibers, and nanoribbons) and structures (e.g., core-.shell, hollow, branched, helical and porous structures) can be readily obtained by controlling different processing parameters. Although various nanofibers including polymers, carbon, ceramics and metals have been synthesized using direct electrospinning or through post-spinning processes, limited works were reported on the compound semiconducting nanofibers because of incompatibility of precursors. In this work, we combined electrospinning and galvanic displacement reaction to demonstrate cost-effective high throughput fabrication of ultra-long hollow semiconducting chalcogen and chalcogenide nanofibers. This procedure exploits electrospinning to fabricate ultra-long sacrificial nanofibers with controlled dimensions, morphology, and crystal structures, providing a large material database to tune electrode potentials, thereby imparting control over the composition and shape of the nanostructures that evolved during galvanic displacement reaction.

  • PDF

발.변전용 지지애자의 기계적 강도해석과 특성시험 (Mechanical Strength Analysis and Property Test of Post Insulator for Substation and Generation)

  • 박기호;조한구;한동희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 춘계학술대회 논문집 유기절연재료 전자세라믹 방전플라즈마 연구회
    • /
    • pp.69-71
    • /
    • 2001
  • FRP has been used very much as high strength core materials for insulators because of its high strength and good insulation properties. In this study cantilever, tension and torsion stress were simulation along to the unidirection glass fiber. In addition, FRP was made by pultrusion method. This paper proposed the procedure of the finite element model updating and pretest using the commerical finite element code MSC.Nastran. To ehance the efficiency of experimental modal analysis. we proposed the process which is the selection of the locations and the number of measurement points for pre-test.

  • PDF

Thermal Storage and Thermodynamic Characteristics of Phase Change Materials Slurries

  • Kwon, Ki-Hyun;Jeong, Jin-Woong;Kim, Jong-Hoon;Kim, Yong-Joo;Choi, Chang-Hyun
    • Food Science and Biotechnology
    • /
    • 제18권6호
    • /
    • pp.1392-1397
    • /
    • 2009
  • This study was aimed at developing a low cost cold storage system for agricultural products. Three kinds of slurries: $K_1$, $K_2$, and $K_3$ slurries were developed using phase change materials (PCMs) such as tetradecane, octadecane, and sodium polyacrylate to maintain the desired temperature ranges. The slurries were manufactured by in-situ polymerization. Tetradecane and octadecane were capsulated in a core with melamine at the surface. The thermodynamic characteristics of the slurries were measured and analyzed. The latent heats of the $K_1$, $K_2$, and $K_3$ slurries at the melting points were 206.41, 186.88, and 147.91 kJ/kg, respectively. A transportable cold storage container was built to investigate the performance of the slurries as thermal storage media. The temperatures at the insides of the container could be maintained in the ranges of 0-5, 5-10, and $10-15^{\circ}C$ for more than 23, 27, and 60 hr with the $K_1$, $K_2$, and $K_3$ slurries, respectively.

Fiber post의 Relining 방법과 시멘트 유형에 따른 Push-out Bond Strength의 비교 (Comparison of Push-out Bond Strengths According to Relining Procedure and Cement Type on Fiber Post)

  • 강현영;조소연;유미경;이광원;김경아
    • 구강회복응용과학지
    • /
    • 제27권3호
    • /
    • pp.253-265
    • /
    • 2011
  • 근관치료된 치아의 수복에서 fiber post 크기와 포스트 공간의 직경이 일치하지 않은 경우, 포스트 공간은 두꺼운 레진 시멘트로 채워지게 된다. 레진 시멘트가 두꺼워지면 시멘트 내에 기포가 형성되어 포스트 분리가 발생되기 쉽다. 이런 문제점을 해결하기 위한 방법은 composite resin을 이용하여 fiber post를 relining하는 것이다. 이렇게 형성된 해부학적 포스트는 포스트 공간에 잘 적합하고 시멘트의 두께를 감소시킨다. 이 연구의 목적은 relining 과정과 임상 과정의 간소화를 위해 사용되고 있는 luting agents 종류에 따른 fiber post의 push-out 결합 강도를 평가하는 것이다. 42개의 발치된 치아는 6개의 그룹(n=7)으로 나누어졌다. (A1: relined fiber post를 Luxacore/all-bond 2로 합착, A2: non-relined fiber post를 Luxacore/all-bond 2로 합착. B1: relined fiber post를 Calibra/XP-bond로 합착. B2: non-relined fiber post를 Calibra/XP-bond로 합착. C1: relined fiber post를 RelyX Unicem으로 합착. C2: non-relined fiber post를 RelyX Unicem으로 합착.) Push-out 결합 강도는 relining procedure와 cement type의 상호작용에 의해 영향을 받는 것으로 나타났다. relined fiber post 그룹이 non-relined fiber post 그룹보다 더 높은 결합 강도를 가지며 fiber post relining 과정은 결합강도에 유의한 영향을 가진다.(p<0.05) Luting agent에 따라 모든 그룹에서 RelyX Unicem의 결합강도가 Luxacore/All-bond 2와 Calibra/XP bond에 의한 것보다 유의하게 더 높았다(p<0.05).

지대치 코어 재료와 In-Ceram coping의 두께가 In-Ceram의 색에 미치는 영향 (COLOR DIFFERNCE OF IN-CERAM BY THE VARIOUS POSTCORE MATERIALS AND COPING THICKNESS)

  • 심직현;방몽숙
    • 대한치과보철학회지
    • /
    • 제33권4호
    • /
    • pp.634-644
    • /
    • 1995
  • The purpose of this study is to evaluate the color differences in the In-Ceram according to coping thickness and various abutment core materials ; amalgam, precious alloy, composite resin, non-precious alloy. After the porcelain was built up on the In-Ceram coping at the thicknes of 0.3mm and 0.5mm then it was cemented with glass ionomer cement to the post & core materials. The following results were obtained. 1. There were significant differences in the $L^*$ values $a^*$ and $b^*$ values in the cementation of different cores, to the In-Ceram(P<0.01). $L^*$ values were not significantly different between the composite resin to the In-Ceram and the $a^*\;b^*$ values were not significantly different between the amalgam and the non-precious alloy. 2. All of cementations of In-Ceram to the core materisal had color difference(${\Delta}E^*ab$) compared to the In-Ceram. In the 0.3mm thickness of the In-Ceram copping non-precious alloy indicated the greatest value, while the composite resin core showed the lowest value with a thickness of 0.5mm In-Ceram copping. 3. By controlloing the In-Ceram coping thickness $L^*$ value was significatly different(P<0.01), but not in $a^*$ and $b^*$ values. 4. In an amalgam, precious & non-prcious alloys there was a 1,74 to 3.06 range color difference in the controlled thickness of In-Ceram coping at the thickness of 0.3mm and 0.5mm. The above results suggest that the requirement of the sufficient thickness of In-Ceram coping and the suitable core material in order to get an estheti restoration by In-Ceram and also to intercept the original core color.

  • PDF

PT공법을 적용한 80MPa급 콘크리트 아웃리거부재의 실험적 연구 (Experimental study of structural behavior of 80MPa concrete outrigger member using post tension method)

  • 최종문;김우재
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2009년도 추계 학술논문 발표대회
    • /
    • pp.31-34
    • /
    • 2009
  • Large outrigger elements tie the concrete core to perimeter columns, significantly increasing the building's lateral stiffness as well as its resistance to overturning due to wind. The outriggers are deep elements, and large tie forces are resisted by top and bottom heavy longitudinal reinforcing and vertical ties. To reduce construction costs, all primary reinforcing bars in outrigger levels are SD500. Further, concrete strengths of 80MPa have been specified for outrigger elements. However, the reductions in the amount of concrete and reinforcement steel are more increased in tall building. With these backgrounds, 80MPa high strength concrete outrigger system using post tension method is developed. Significant economic savings can be made by reducing the element sizes and material content. The developed outrigger system is designed using strut-and-tie models. In addition, four 1/4-scale test specimens were selected from the same prototype structure. The results from the tests are confirmed that the structural behaviors of the developed outrigger member have better capacities than those of a conventional method.

  • PDF

국부 가열 금형을 이용한 플라스틱 나노 구조표면 사출성형 연구 (A Study on Plastic Injection Molding of NanosStructured Surface with a Local Mold Heating System)

  • 라문우;박장민;김동언
    • 한국기계가공학회지
    • /
    • 제14권4호
    • /
    • pp.8-13
    • /
    • 2015
  • In this study, we fabricated and characterized a nanostructured surface based on a plastic injection molding with a local mold heating (LMH) system. A metal mold core with a closed packed nano convex array (CVA) was achieved by integrated engineering procedures: (1) master template fabrication by anodic aluminum oxidation (AAO), (2) nickel electroforming (NE) process, and (3) post-processing by precision machining. The nickel mold core was utilized to replicate a surface with a closed packed nano concave-array (CCA) based on injection molding using cyclic olefin copolymer (COC) as a plastic material. In particular, an LMH system was introduced to enhance transcription quality of the nano structures by delaying solidification of molten polymer near the surface of the mold core.

Thermal Stability Enhanced Ge/graphene Core/shell Nanowires

  • 이재현;최순형;장야무진;김태근;김대원;김민석;황동훈;;황성우;황동목
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.376-376
    • /
    • 2012
  • Semiconductor nanowires (NWs) are future building block for nano-scale devices. Especially, Ge NWs are fascinated material due to the high electrical conductivity with high carrier mobility. It is strong candidate material for post-CMOS technology. However, thermal stability of Ge NWs are poor than conventional semiconductor material such as Si. Especially, when it reduced size as small as nano-scale it will be melted around CMOS process temperature due to the melting point depression. Recently, Graphene have been intensively interested since it has high carrier mobility with single atomic thickness. In addition, it is chemically very stable due to the $sp^2$ hybridization. Graphene films shows good protecting layer for oxidation resistance and corrosion resistance of metal surface using its chemical properties. Recently, we successfully demonstrated CVD growth of monolayer graphene using Ge catalyst. Using our growth method, we synthesized Ge/graphene core/shell (Ge@G) NW and conducted it for highly thermal stability required devices. We confirm the existence of graphene shell and morphology of NWs using SEM, TEM and Raman spectra. SEM and TEM images clearly show very thin graphene shell. We annealed NWs in vacuum at high temperature. Our results indicated that surface melting phenomena of Ge NWs due to the high surface energy from curvature of NWs start around $550^{\circ}C$ which is $270^{\circ}C$ lower than bulk melting point. When we increases annealing temperature, tip of Ge NWs start to make sphere shape in order to reduce its surface energy. On the contrary, Ge@G NWs prevent surface melting of Ge NWs and no Ge spheres generated. Furthermore, we fabricated filed emission devices using pure Ge NWs and Ge@G NWs. Compare with pure Ge NWs, graphene protected Ge NWs show enhancement of reliability. This growth approach serves a thermal stability enhancement of semiconductor NWs.

  • PDF

A novel prediction model for post-fire elastic modulus of circular recycled aggregate concrete-filled steel tubular stub columns

  • Memarzadeh, Armin;Shahmansouri, Amir Ali;Poologanathan, Keerthan
    • Steel and Composite Structures
    • /
    • 제44권3호
    • /
    • pp.309-324
    • /
    • 2022
  • The post-fire elastic stiffness and performance of concrete-filled steel tube (CFST) columns containing recycled aggregate concrete (RAC) has rarely been addressed, particularly in terms of material properties. This study was conducted with the aim of assessing the modulus of elasticity of recycled aggregate concrete-filled steel tube (RACFST) stub columns following thermal loading. The test data were employed to model and assess the elastic modulus of circular RACFST stub columns subjected to axial loading after exposure to elevated temperatures. The length/diameter ratio of the specimens was less than three to prevent the sensitivity of overall buckling for the stub columns. The gene expression programming (GEP) method was employed for the model development. The GEP model was derived based on a comprehensive experimental database of heated and non-heated RACFST stub columns that have been properly gathered from the open literature. In this study, by using specifications of 149 specimens, the variables were the steel section ratio, applied temperature, yielding strength of steel, compressive strength of plain concrete, and elastic modulus of steel tube and concrete core (RAC). Moreover, parametric and sensitivity analyses were also performed to determine the contribution of different effective parameters to the post-fire elastic modulus. Additionally, comparisons and verification of the effectiveness of the proposed model were made between the values obtained from the GEP model and the formulas proposed by different researchers. Through the analyses and comparisons of the developed model against formulas available in the literature, the acceptable accuracy of the model for predicting the post-fire modulus of elasticity of circular RACFST stub columns was seen.

초파리 배자 신경세포의 화학적 신경연접 미세구조 (Ultrastructural Analysis of Chemical Synapses in Cultured Wild Type Drosophila Embryonic Neurons)

  • 오현우;박호용
    • Applied Microscopy
    • /
    • 제34권4호
    • /
    • pp.223-230
    • /
    • 2004
  • 초파리 돌연변이를 이용한 신경연접에서의 신경충격의 전달을 알아보기 위하여 배양한 초파리 배자 신경세포의 신경연접 미세구조를 관찰하여 분석하였다. 배양된 Wild-type 초파리 배자 신경세포의 신경연접(synapse)은 신경연접간극(synaptic cleft)에 의해 구분되면서 평행하게 뻗어있는 신경연접전 돌기(presynaptic area)의 세포막과 신경연접후 세포(postsynaptic cell)의 세포막 구조에 의해서 확인하였다. Presynaptic active zones과 postsynaptic densities는 각 세포막부분의 전자밀도에 의해 구분하였다. 특히 두 개의 세포막이 서로 근접하여 있으면서, 하나 또는 그 이상의 전자밀도가 높은 presynaptc densities 를 가지고 있고 그 주위에 투명한 신경연접소포들(clear core synaptic vesicles)이 모여있을 경우 이를 신경연접전 돌기로 보았다. 신경연접전 돌기에는 평균 $35.1{\pm}1.44$ nm 직경의 작고 투명한 신경연접소포들이 모여있었다. 신경연접소포들 중 일부는 세포막이나 세포막의 전자밀도가 높은 부분에 직접 접촉하고 있었는데 이를 신경전달물질이 방출되기 직전인 morphologically docked vesicles로 보았다. 이외에도 신경연접전 돌기에서는 내부가 전자밀도가 높은 물질로 채워져 있고 직경이 큰 dense core 신경연접소포들도 관찰할 수 있었다.