• Title/Summary/Keyword: Positive sequence component

Search Result 51, Processing Time 0.032 seconds

A Comparative Study of Frequency Estimation Techniques using High Speed FIR Filter and Phasor Angle between Two Phasors (고속 FIR 필터와 두 페이저 위상을 이용한 주파수 추정 알고리즘의 비교 연구)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.122-129
    • /
    • 2009
  • Frequency is an important operating parameter of a power system. It is essential that the frequency of a power system be maintained very close to its nominal frequency. And frequency measurement devices have need to measure a fast and accurate of frequency using voltage signals. This paper proposes a comparative study of frequency estimation techniques using the high speed FIR filter based algorithm, the DFT filter based algorithm using phasor angle between two phasors, and positive sequence component based algorithm using the half angle between two successive positions of phasor. The discussed three techniques have been formed through numerical manipulation of a discrete system. The proposed techniques have been tested using signals obtained from selected power system model using ATP simulation package. Some test results are shown in this paper.

A Study on the Sequence Impedance Modeling of Underground Transmission Systems (지중송전선로의 대칭분 임피던스 모델링에 관한 연구)

  • Hwang, Young-Rok;Kim, Kyung-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.6
    • /
    • pp.60-67
    • /
    • 2014
  • Power system fault analysis is commonly based on well-known symmetrical component method, which describes power system elements by positive, negative and zero sequence impedance. The majority of fault in transmission lines is unbalanced fault, such as line-to-ground faults, so that both positive and zero sequence impedance is required for fault analysis. When unbalanced fault occurs, zero sequence current flows through earth and ground wires in overhead transmission systems and through cable sheaths and earth in underground transmission systems. Since zero sequence current distribution between cable sheath and earth is dependent on both sheath bondings and grounding configurations, care must be taken to calculate zero sequence impedance of underground cable transmission lines. In this paper, EMTP-based sequence impedance calculation method was described and applied to 345kV cable transmission systems. Calculation results showed that detailed circuit analysis is desirable to avoid possible errors of sequence impedance calculation resulted from various configuration of cable sheath bonding and grounding in underground cable transmission systems.

A Novel Fast Open-loop Phase Locking Scheme Based on Synchronous Reference Frame for Three-phase Non-ideal Power Grids

  • Xiong, Liansong;Zhuo, Fang;Wang, Feng;Liu, Xiaokang;Zhu, Minghua;Yi, Hao
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1513-1525
    • /
    • 2016
  • Rapid and accurate phase synchronization is critical for the reliable control of grid-tied inverters. However, the commonly used software phase-locked loop methods do not always satisfy the need for high-speed and accurate phase synchronization under severe grid imbalance conditions. To address this problem, this study develops a novel open-loop phase locking scheme based on a synchronous reference frame. The proposed scheme is characterized by remarkable response speed, high accuracy, and easy implementation. It comprises three functional cascaded blocks: fast orthogonal signal generation block, fast fundamental-frequency positive sequence component construction block, and fast phase calculation block. The developed virtual orthogonal signal generation method in the first block, which is characterized by noise immunity and high accuracy, can effectively avoid approximation errors and noise amplification in a wide range of sampling frequencies. In the second block, which is the foundation for achieving fast phase synchronization within 3 ms, the fundamental-frequency positive sequence components of unsymmetrical grid voltages can be achieved with the developed orthogonal signal construction strategy and the symmetrical component method. The real-time grid phase can be consequently obtained in the third block, which is free from self-tuning closed-loop control and thus improves the dynamic performance of the proposed scheme. The proposed scheme is adaptive to severe unsymmetrical grid voltages with sudden changes in magnitude, phase, and/or frequency. Moreover, this scheme is able to eliminate phase errors induced by harmonics and random noise. The validity and utility of the proposed scheme are verified by the experimental results.

Control Strategy for Three-Phase Grid-Connected Converters under Unbalanced and Distorted Grid Voltages Using Composite Observers

  • Nguyen, Thanh Hai;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.469-478
    • /
    • 2013
  • This paper proposes a novel scheme for the current controller for the grid-side converter (GSC) of permanent-magnet synchronous generator (PMSG) wind turbines to eliminate the high-order harmonics in the grid currents under grid voltage disturbances. The voltage unbalance and harmonics in three-phase systems cause grid current distortions. In order to mitigate the input current distortions, multi-loop current controllers are applied, where the positive-sequence component is regulated by proportional-integral (PI) controllers, and the negative-sequence and high-order harmonic components are regulated by proportional-resonance (PR) controllers. For extracting the positive/negative-sequence and harmonic components of the grid voltages and currents without a phase delay or magnitude reduction, composite observers are applied, which give faster and more precise estimation results. In addition, an active damping method using PR controllers to damp the grid current component of the resonant frequency is employed to improve the operating stability of VSCs with inductor-capacitor-inductor (LCL) filters. The validity of the proposed method is verified by simulation and experimental results.

Analysis of Sequence Impedances of 345kV Cable Transmission Systems (실계통 345kV 지중송전선 대칭좌표 임피던스의 해석)

  • Choi, Jong-Kee;Ahn, Yong-Ho;Yoon, Yong-Beum;Oh, Sei-Ill;Kwa, Yang-Ho;Lee, Myoung-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.905-912
    • /
    • 2013
  • Power system fault analysis is commonly based on well-known symmetrical component method, which describes power system elements by positive, negative and zero sequence impedance. In case of balanced fault, such as three phase short circuit, transmission line can be represented by positive sequence impedance only. The majority of fault in transmission lines, however, is unbalanced fault, such as line-to-ground faults, so that both positive and zero sequence impedance is required for fault analysis. When unbalanced fault occurs, zero sequence current flows through earth and skywires in overhead transmission systems and through cable sheaths and earth in cable transmission systems. Since zero sequence current distribution between cable sheath and earth is dependent on both sheath bondings and grounding configurations, care must be taken to calculate zero sequence impedance of underground cable transmission lines. In this paper, conventional and EMTP-based sequence impedance calculation methods were described and applied to 345kV cable transmission systems (4 circuit, OF 2000mm2). Calculation results showed that detailed circuit analysis is desirable to avoid possible errors of sequence impedance calculation resulted from various configuration of cable sheath bonding and grounding in underground cable transmission systems.

Equivalent Grid Impedance Estimation Method Using Negative Sequence Current Injection in Three-Phase Grid-connected Inverter (3상 계통 연계형 인버터의 역상분 전류 주입을 이용한 계통 등가 임피던스 추정 기법)

  • Park, Chan-Sol;Song, Seung-Ho;Im, Ji-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.6
    • /
    • pp.526-533
    • /
    • 2015
  • A new algorithm is proposed for the estimation of equivalent grid impedance at the point of common coupling of a grid-tie inverter output. The estimated impedance parameter can be used for the improvement of the performance and the stability of the distributed generation system. The estimation error is inevitable in the conventional estimation method because of the axis rotation due to PLL. In the conventional estimation error, the d-q voltage and current are used for the calculation of the impedance with active and reactive current injections. Conversely, in the proposed algorithm, the negative sequence current is injected, and then the negative sequence voltage is measured for the impedance estimation. As the positive and negative sequence current controller is independent and the PLL is based on the positive sequence component only, the estimation of the equivalent impedance can be achieved with high accuracy. Simulation and experimental results are compared to validate the proposed algorithm.

Series-Active and Shunt-Pasive Type Power Filter Compensating Harmonic Currents and Unbalanced Voltages of Source (직렬형 능동필터와 수동형 병렬필터를 이용한 전원불평형 및 고조파 전류 보상)

  • Lee G-Myoung;Lee Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.565-568
    • /
    • 2001
  • A novel control scheme compensating for source voltage unbalance and harmonic current for series active power filters is proposed, where the references for voltage unbalance and current harmonic and phase angle is derived from the positive sequence component of the source voltage obtained simply through digital all-pass filters, which makes the whole control algorithm simpler than other methods using p-q theory. In addition, the harmonic component of source current is compensated by harmonic component of load voltage and therefore fundamental component of source current is considered as separated terms for the control issue. The validity of the proposed scheme has been verified by experimental results.

  • PDF

Cleavage-Dependent Activation of ATP-Dependent Protease HslUV from Staphylococcus aureus

  • Jeong, Soyeon;Ahn, Jinsook;Kwon, Ae-Ran;Ha, Nam-Chul
    • Molecules and Cells
    • /
    • v.43 no.8
    • /
    • pp.694-704
    • /
    • 2020
  • HslUV is a bacterial heat shock protein complex consisting of the AAA+ ATPase component HslU and the protease component HslV. HslV is a threonine (Thr) protease employing the N-terminal Thr residue in the mature protein as the catalytic residue. To date, HslUV from Gram-negative bacteria has been extensively studied. However, the mechanisms of action and activation of HslUV from Gram-positive bacteria, which have an additional N-terminal sequence before the catalytic Thr residue, remain to be revealed. In this study, we determined the crystal structures of HslV from the Gram-positive bacterium Staphylococcus aureus with and without HslU in the crystallization conditions. The structural comparison suggested that a structural transition to the symmetric form of HslV was triggered by ATP-bound HslU. More importantly, the additional N-terminal sequence was cleaved in the presence of HslU and ATP, exposing the Thr9 residue at the N-terminus and activating the ATP-dependent protease activity. Further biochemical studies demonstrated that the exposed N-terminal Thr residue is critical for catalysis with binding to the symmetric HslU hexamer. Since eukaryotic proteasomes have a similar additional N-terminal sequence, our results will improve our understanding of the common molecular mechanisms for the activation of proteasomes.

SOME NECESSARY CONDITIONS FOR ERGODICITY OF NONLINEAR FIRST ORDER AUTOREGRESSIVE MODELS

  • Lee, Chan-Ho
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.227-234
    • /
    • 1996
  • Consider nonlinear autoregressive processes of order 1 defined by the random iteration $$ (1) X_{n + 1} = f(X_n) + \epsilon_{n + 1} (n \geq 0) $$ where f is real-valued Borel measurable functin on $R^1, {\epsilon_n : n \geq 1}$ is an i.i.d.sequence whose common distribution F has a non-zero absolutely continuous component with a positive density, $E$\mid$\epsilon_n$\mid$ < \infty$, and the initial $X_0$ is independent of ${\epsilon_n : n > \geq 1}$.

  • PDF

A Syudy On DVR Control for Unbalanced Voltage Compensation (불평형 전압 보상을 위한 DVR 제어에 관한 연구)

  • Jung, Hong-Ju;Chung, Joon-Mo;Song, Jong-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.218-221
    • /
    • 2001
  • This paper presents a new control scheme for a Dynamic Voltage Restorer(DVR) system consisting of series voltage source PWM converters. The control system is designed using differential controllers and digital filters to transfer the faulted ac source voltage to a d-q model and to separate the positive and negative sequence component for individual compensation. The performance of the presented controller and scheme are confirmed through simulation and actual experiment.

  • PDF