• Title/Summary/Keyword: Positive Position Feedback(PPF)

Search Result 29, Processing Time 0.038 seconds

Real-Time Tuning of the Active Vibration Controller by the Genetic Algorithm (유전자 알고리즘을 이용한 능동진동제어기의 실시간 조정)

  • 신태식
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.1083-1093
    • /
    • 2000
  • This paper is concerned with the real-time automatic tuning of the positive position feedback controller for smart structures by the genetic algorithms. The genetic algorithms haute proven its effectiveness in searching optimal design parameters without falling into local minimums thus rendering globally optimal solutions. The advantage of the positive position feedback controller is that if it is tuned properly it can enhance the damping value of a target mode without affecting other modes. In this paper, we develop for the first time a real-time algorithm for determining a tuning frequency of the PPF controller based on the genetic algorithms. To this end, the digital PPF control law is downloaded to the DSP chip and a main program, which runs the genetic algorithms in real time, updates the parameter of the controller in real time. Hence, any kind of control including the positive position feedback controller can be used in adaptive fashion in real time. Experimental results show that the real-time tuning of the positive position feedback controller can be achieved successfully. so that vibrations are suppressed satisfactorily.

  • PDF

The Stability Conditions, Performance and Design Methodology for the Positive Position Feedback Controller (양변위 되먹임 제어기의 안정성, 제어 성능 및 설계 방법)

  • Kwak, Moon-Kyu;Han, Sang-Bo;Heo, Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.3
    • /
    • pp.208-213
    • /
    • 2004
  • This paper is concerned with the theoretical estimation of the single-input single-output(SISO) positive position feedback(PPF) controller and the derivation of the stability conditions for the multi-input multi-output (MIMO) PPF controller. Although the stability condition for the SISO PPF controller was derived in the earlier works, the question regarding the performance estimation of the SISO PPF controller has never been studied theoretically. Hence, the SISO PPF controller for the single degree-of-freedom system was first investigated and then control parameters including gain, the filter frequency, and the damping factor of the PPF controller were analyzed in detail thus providing the design methodology for the SISO PPF controller. In the case of real structure. there are infinite number of natural modes so that some modes are to be controlled by a limited number of actuator and sensor. Based on the theoretical results on the SISO PPF controller, the stability condition for the multi-input multi-output PPF controller was derived when only the few number of modes are to be controlled. The control spillover problem is also discussed in detail.

Active Vibration Control of Multi-Mode Forced Vibration Using PPF Control Technique (PPF 제어기법을 이용한 다중 모드 강제 진동의 능동 진동 제어)

  • 한상보;곽문규;윤신일
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.1007-1013
    • /
    • 1997
  • This paper presents active vibration control scheme of multi-mode forced vibration using piezocetamic sensors and actuators. The control scheme adopted is the Positive Position Feedback (PPF) control. Among various vibration control techniques. PPF control technique makes use of generalized displacement measurements to accomplish the vibration suppression. Two independent controllers are implemented to control the first and the second modes of the beam under external excitation. Experimental results for various damping ratios and feedback gains of the PPF controllers are compared with respect to the contorl efficiency. The results indicate that steady state vibration under wide band excitation can be controlled effectively when multiple sets of PZT sensors and actuators were used with PPF control technique.

  • PDF

열린 박스 구조물에 대한 적응형 PPF 제어

  • 정환수;윤영동;신윤덕;기창두
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.109-109
    • /
    • 2004
  • 구조물에 있어서 진동은 소음을 유발하며 구조물을 불안정하게 만드는 요인이 된다. 특히, 저주파 진동은 구조물에 미치는 영향이 크므로, 유연구조물의 저주파 진동모드들을 우선적으로 제어할 필요가 있다. 본 논문에서는 압전세라믹을 작동기로, 압전필름을 감지기로 사용하였고, 능동 제어 알고리즘의 하나인 적응형 디지털 PPF(Positive Position Feedback) 제어기를 구성하여 유연 외팔 평판과 열린 박스 구조물에서 저주파 진동을 감소시켰다.(중략)

  • PDF

Active Vibration Control of Structure Using Active Tuned Mass Damper and Modified PPF Controller (능동동조질량감쇠기와 수정 PPF 제어기를 이용한 구조물의 능동진동제어)

  • Kim, Ki-Young;Kwak, Moon-K.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.224-230
    • /
    • 2008
  • This paper is concerned with the active vibration control of building structure by means of the active tuned mass damper and the modified positive position feedback controller. To this end, one-degree-of-freedom spring-mass-damper system equipped with ATMD is considered. The stability condition for the addressed system when applying the proposed PPF controller is derived by Routh-Hurwitz stability criterion. The stability condition shows that the modified PPF controller is absolutely stable if the controller gain is positive. so that the modified PPF controller can be used without difficulty. Theoretical study shows that the modified PPF controller can effectively suppress vibrations as the original PPF controller does in smart structure applications. To investigate the validity of the modified PPF controller, a simple experimental structure with an ATMD system driven by DC motor was built. The modified PPF control algorithm was implemented on Atmel 128 microcontroller. The experimental result shows that the modified PPF controller can also suppress vibrations for the real structure.

Active Vibration Control of Structure Using Active Tuned Mass Damper and Modified PPF Controller (능동동조질량감쇠기와 수정 PPF 제어기를 이용한 구조물의 능동진동제어)

  • Kim, Ki-Young;Kwak, Moon-K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.550-555
    • /
    • 2007
  • This paper is concerned with the active vibration control of building structure by means of the active tuned mass damper and the modified positive position feedback controller. To this end, one-degree-of-freedom spring-mass-damper system equipped with ATMD is considered. The stability condition for the addressed system when applying the proposed PPF controller is derived by Routh-Hurwitz stability criterion. The stability condition shows that the modified PPF controller is absolutely stable if the controller gain is positive, so that the modified PPF controller can be used without difficulty. Theoretical study shows that the modified PPF controller can effectively suppress vibrations as the original PPF controller does in smart structure applications. To investigate the validity of the modified PPF controller, a simple experimental structure with an ATMD system driven by DC motor was built. The modified PPF control algorithm was implemented on Atmel 128 microcontroller. The experimental result shows that the modified PPF controller can also suppress vibrations for the real structure.

  • PDF

Real-Time Multiple-Parameter Tuning of PPF Controllers for Smart Structures by Genetic Algorithms (유전자 알고리듬을 이용한 지능구조물의 PPF 제어기 실시간 다중변수 조정)

  • Heo, Seok;Kwak, Moon-Kyu
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.147-155
    • /
    • 2001
  • This paper is concerned with the real-time automatic tuning of the multi-input multi-output positive position feedback controllers for smart structures by the genetic algorithms. The genetic algorithms have proven its effectiveness in searching optimal design parameters without falling into local minimums thus rendering globally optimal solutions. The previous real-time algorithm that tunes a single control parameter is extended to tune more parameters of the MIMO PPF controller. We employ the MIMO PPF controller since it can enhance the damping value of a target mode without affecting other modes if tuned properly. Hence, the traditional positive position feedback controller can be used in adaptive fashion in real time. The final form of the MIMO PPF controller results in the centralized control, thus it involves many parameters. The bounds of the control Parameters are estimated from the theoretical model to guarantee the stability. As in the previous research, the digital MIMO PPF control law is downloaded to the DSP chip and a main program, which runs genetic algorithms in real time, updates the parameters of the controller in real time. The experimental frequency response results show that the MIMO PPF controller tuned by GA gives better performance than the theoretically designed PPF. The time response also shows that the GA tuned MIMO PPF controller can suppress vibrations very well.

  • PDF

Vibration Control of Actuators Using Magnetostrictive Materials and PPF Algorithm (자기변형재료와 PPF 알고리즘을 이용한 작동기의 진동제어)

  • Kim, Min-Oug;Hwang, Ho-Yon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.3
    • /
    • pp.24-32
    • /
    • 2007
  • In this research, using Terfenol-D actuator composed of magnetostrictive material as shaker and controller, active vibration control theory was applied and verified by experiments. PPF(positive Position Feedback) algorithm which is effective for the control of low frequency vibration was used for the control of a structure. Responses of inputs due to various design variable used for the PPF filter were observed. To investigate the characteristics of magnetostrictive materials, actuator responses were measured for known inputs and satisfactory results were obtained to reduce the vibration level after applying the control input for the actuator.

  • PDF

Positive Position Feedback Control of Plate Vibrations using Moment Pair Actuators (모멘트상 액추에이터가 적용된 평판의 PPF 능동제어)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.527-535
    • /
    • 2012
  • This paper reports the active vibration control of plates using positive position feedback controller (PPF). The equations of motion of the plate under force and moment pairs were derived and the equations of PPF controllers were formulated. The effect of the parameters - gain and damping ratio - of the PPF controllers on the open loop transfer function was investigated mainly in terms of the system stability. Increasing the gain of the PPF controller tuned at a mode, the magnitude of the open loop transfer function is increased at all frequencies without changing the phase behavior. The increase of the damping ratio of the PPF controller leads to decrease the magnitude of the open loop transfer function and to modify its phase characteristics to be more stable. Two PPF controllers connected in parallel, Each PPF controller is tuned at the $1^{st}$ and $2^{nd}$ modes, respectively. Their parameters were determined to remain the system to be stable based on the results of the parametric study. A significant reduction in vibration at the 2 modes can be obtained.

  • PDF

Vibration Control of Beam Containing ER Fluid Using PPF Control Scheme (PPF 제어기법을 적용한 전기점성유체가 함유된 보의 진동제어)

  • Yun Shin-Il;Chin Do-Hun;Yoon Moon-Chul
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.32-37
    • /
    • 2005
  • Several types of smart materials and control scheme are available to adjust the structure actively in various external disturbances. A control scheme was introduced for a specific material. But the effectiveness of the control scheme has some limitation according to the choice of the smart materials and the response of the structure. The ER(Electrorheological) fluid is adequate for a large control force, and the PZT(lead zirconate titanate) patches are suitable for small but arbitrary control force at any point of the structure. It can be used for active control of structure by changing the dynamic characteristics of the structure. But it has some difficulty in suppressing the excited vibration in broad band. To compensate this resonance of the controlled structure, a hybrid controller was constructed using PPF(Positive position feedback) control with PZT and ER fluid control.