• Title/Summary/Keyword: Positioning scheme

Search Result 248, Processing Time 0.031 seconds

Sensor Positioning Scheme using Density Probability Models in Non-uniform Wireless Sensor Networks (비 균일 무선 센서 네트워크 환경에서 밀집 확률 모델링을 이용한 센서 위치 인식 기법)

  • Park, Hyuk;Hwang, Dong-Kyo;Park, Jun-Ho;Seong, Dong-Ook;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.3
    • /
    • pp.55-66
    • /
    • 2012
  • In wireless sensor networks, a positioning scheme is one of core technologies for sensor applications such as disaster monitoring and environment monitoring. The One of the most positioning scheme, called DV-HOP does not consider non-uniform sensor networks that are actual distributed environments. Therefore, the accuracy of the existing positioning scheme is low in non-uniform network environments. Moreover, because it requires many anchor nodes for high accuracy in non-uniform network environments, it is expensive to construct the network. To overcome this problem, we propose a novel sensor positioning scheme using density probability models in non-uniform wireless sensor networks. The proposed scheme consists of the density probability model using the deployment characteristics of sensor nodes and the distance refinement algorithm for high accuracy. By doing so, the proposed scheme ensures the high accuracy of sensor positioning in non-uniform networks. To show the superiority of our proposed scheme, we compare it with the existing scheme. Our experimental results show that our proposed scheme improves about 44% accuracy of sensor positioning over the existing scheme on average even in non-uniform sensor networks.

A Positioning Scheme Using Sensing Range Control in Wireless Sensor Networks (무선 센서 네트워크 환경에서 센싱 반경 조절을 이용한 위치 측정 기법)

  • Park, Hyuk;Hwang, Dongkyo;Park, Junho;Seong, Dong-Ook;Yoo, Jaesoo
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.2
    • /
    • pp.52-61
    • /
    • 2013
  • In wireless sensor networks, the geographical positioning scheme is one of core technologies for sensor applications such as disaster monitoring and environment monitoring. For this reason, studies on range-free positioning schemes have been actively progressing. The density probability scheme based on central limit theorem and normal distribution was proposed to improve the location accuracy in non-uniform sensor network environments. The density probability scheme measures the final positions of unknown nodes by estimating distance through the sensor node communication. However, it has a problem that all of the neighboring nodes have the same 1-hop distance. In this paper, we propose an efficient sensor positioning scheme that overcomes this problem. The proposed scheme performs the second positioning step through the sensing range control after estimating the 1-hop distance of each node in order to minimize the estimation error. Our experimental results show that our proposed scheme improves the accuracy of sensor positioning by about 9% over the density probability scheme and by about 48% over the DV-HOP scheme.

A Weighted Preliminary Cut-off Indoor Positioning Scheme Based on Similarity between Peaks of RSSI (최대 RSSI 간의 유사도를 기반으로 한 가중치 부여 사전 컷-오프 실내 위치 추정 방식)

  • Kim, Dongjun;Son, Jooyoung
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.7
    • /
    • pp.772-778
    • /
    • 2018
  • We have previously proposed a preliminary cut-off indoor positioning scheme considering the reference point with the same signal similarity. This scheme estimates the position using the relative rank of the peak of received signal strength from the beacons around user. However, this scheme has a weak point with lower accuracy when there are more than one nearest reference points having the same signal similarity. In order to tackle this, we propose a weighted preliminary cut-off indoor positioning scheme. Firstly, if the above problem occurs, the similarity to the peak of signal strength is considered as well as the relative rank. Next, weights are assigned to the nearest reference points using the similarity to the peak of the received signal strength. Finally, the user's position is estimated by applying the weights. As a result, the weighted preliminary cut-off scheme improves the positioning accuracy by about 7.9% compared to the previous scheme.

Turbo Positioning Using Link Reliability in Wireless Networks

  • Yun, Kyungsu;Park, Ji Kyu;Ahn, Jae Young;Kwon, Jae Kyun
    • ETRI Journal
    • /
    • v.40 no.1
    • /
    • pp.101-110
    • /
    • 2018
  • In wireless positioning systems using range measurements non-line-of-sight (NLOS) links cause estimation errors. Several studies have attempted to improve the positioning performance by mitigating these NLOS errors. These studies, however, have focused on the performance of a dataset consisting of three or more links. Therefore, measurement errors induced by links are averaged, and a reliable link is not fully utilized in the dataset. This paper proposes a Link Reliability based on Range Measurement (LRRM) scheme, which specifies the relative reliability of each link using residuals. The link reliability becomes the input to a Link Residual Weighting (LRW) scheme, which is also proposed as a weighted positioning scheme. Moreover, LRRM and LRW constitute new turbo positioning, where the estimation errors are reduced considerably by iterative updates.

An Asynchronous UWB Positioning Scheme with Low Complexity and Low Power Consumption (낮은 복잡도와 전력 소모의 비동기식 UWB 무선측위 기법)

  • Kim, Jae-Woon;Park, Young-Jin;Lee, Soon-Woo;Shin, Yo-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11C
    • /
    • pp.1098-1105
    • /
    • 2009
  • In this paper, we propose an asynchronous UWB (Ultra Wide Band) Positioning scheme that can provide precise positioning performance with low complexity and low power consumption. We also present the residual test to improve the positioning performance in multipath channels having heavy NLoS (Non-Line of Sight) components. As compared to conventional ToA (Time of Arrival) positioning scheme that requires round-trip transmissions as many as the number of beacons, the proposed UWB positioning scheme effectively decrease power consumption and processing delay since a single round-trip transmission is only required. Also, as compared to conventional TDoA (Time Difference of Arrival) positioning scheme requiring precise synchronization among the beacons, asynchronous nature of the proposed scheme achieves very low system complexity. Through simulations in LoS (Line of Sight) channel models, we observe that the proposed scheme requires low system complexity, low power consumption, while providing positioning performance of almost the same accuracy as the conventional ToA and TDoA positioning schemes. In addition, the proposed scheme by employing the residual test achieves accurate positioning performance even in multipath channels having heavy NLoS components.

Trajectory Following Control Using Cogging Force Model in Linear Positioning System

  • Chung, Myung-Jin;Gweon, Dae-Gab
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.3
    • /
    • pp.62-68
    • /
    • 2002
  • To satisfy the requirement of the one axis linear positioning system, which is following control of the desired trajectory without following error and is the high positioning accuracy, feed-forward loop having cogging force model is proposed. In the one axis linear positioning system with linear PM motor, cogging force acting as disturbance is modeled analytically. Analytic model of cogging force is verified by result measured from positioning system constructed with linear PM motor. Measured result is very similar with proposed analytic model. Cogging force model is used as feet forward loop in control scheme of linear positioning system. Cogging force feed-forward'loop is obtained from analytic model of cogging farce. Trajectory following error is reduced from 300nm to 100nm by applying the proposed cogging farce feed-forward loop. By using analytic model of cogging force, the control scheme is simplified. Also this analytic model is applicable to calculation of characteristic value of positioning system in design process.

A prospective study on DPO training scheme for Korean seafarers (한국 선원들을 위한 DPO 양성과정에 대한 전망)

  • Kim, Chang-Su;O, Dong-Geon;Kim, Si-Hwa
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.06a
    • /
    • pp.43-45
    • /
    • 2014
  • DPO(Dynamic positioning Operator)는 Dynamic positioning 기능이 있는 선박에 승선하는 항해사로서 항해, 정박 당직 뿐만 아니라 Dynamic positioning이 요구되는 다양한 offshore 작업시에 DP 당직을 수행한다. 정식 DPO가 되기 위하여는 SCTW 항해사 면허뿐만 아니라 NI 혹은 NMD에서 규정한 training 과정을 이수하여 DP limited 혹은 DP unlimited certificate를 취득하여야 한다. 본 연구에서는 1982년부터 업계 표준 DPO의 training과 certification을 담당하고 있는 NI (Nautical Institute) 산하 DPTEG(Dynamic Positioning Training Executive Group)의 DPO 양성과정을 조사하였다. 특히 업계의 보다 현실적인 DPO training 과정에 대한 요구에 대응하여 2014년 3월에 발표되어 2015년 1월1일부터 발효될 더욱 강화된 training과 verification 절차를 담은 새로운 DPO training scheme을 분석하여 한국 해기사들이 DPO로서 offshore sector에 진출하기 위한 방안을 제시하였다.

  • PDF

A New Technique for Improved Positioning Accuracy Employing Gaussian Filtering in Zigbee-based Sensor Networks (지그비 기반의 센서 네트워크에서 Gaussian Filtering 기법을 적용한 위치 추적 향상 기법)

  • Hur, Byoung-Hoe;Kim, Jeong-Gon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12A
    • /
    • pp.982-990
    • /
    • 2009
  • The IEEE 802.15.4 wireless sensor network is composed of the unique sensor devices to monitor and collect physical or environmental conditions. The interests in a positioning technology, which is one of the environment monitoring technologies, are gradually increased according to the development of the sensor technology and IT infrastructure. Generally, it is difficult for the positioning system using RSSI (Received Signal Strength Indication) based implementation to get accurate position because of obstacles, RF wave's delay and multipath. Therefore, in this paper, we investigate the improved positioning technologies for RSSI-based positioning system. This paper also proposes the enhanced scheme to improve the accuracy of positioning system by applying the Gaussian Filter algorithm, which is widely used for enhancing the performance of image processing system. For the implementation of proposed scheme, we firstly make a look-up tables, which represent the distance between target node and master node and corresponding RSSI value of each target node which are recorded as an average value after investigating the characteristics of attenuation of transmitted signal By applying the pre-determined look-up tables and Gaussian Filtering in the proposed scheme, we analyzed the positioning performance and compared with other conventional RSSI-based positioning algorithms.

Constant Envelope Multiplexing via Constellation Tailoring Scheme for Flexible Power Allocation of GNSS Signals

  • Shin, Janghwan;Joo, Jung-Min;Lim, Deok Won;Ahn, Jae Min
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.4
    • /
    • pp.335-340
    • /
    • 2021
  • A constant envelope multiplexing via constellation tailoring scheme is proposed for flexible power allocation of Global Navigation Satellite System (GNSS) signals. The proposed scheme is compared with the coherent adaptive subcarrier modulation (CASM) adopted in the L1 band signals of the Global Positioning System (GPS) in terms of power difference and power loss. Analysis of the constellation optimization results on the power difference and power loss show that the proposed scheme outperforms the CASM of the GPS signals in the allowable power difference of less than 0.1 dB.

An Improved Preliminary Cut-off Indoor Positioning Scheme in Case of No Neighborhood Reference Point (이웃 참조 위치가 없는 경우를 개선한 실내 위치 추정 사전 컷-오프 방식)

  • Park, Byoungkwan;Kim, Dongjun;Son, Jooyoung;Choi, Jongmin
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.1
    • /
    • pp.74-81
    • /
    • 2017
  • In learning stage of the preliminary Cut-off indoor positioning scheme, RSSI and UUID data received from beacons at each reference point(RP) are stored in fingerprint map. The fingerprint map and real-time beacon information are compared to identify the nearest K reference points through which the user position is estimated. If the number of K is zero, this scheme cannot estimate user position. We have improved the preliminary Cut-off scheme to get the estimated user position even in the case. The improved scheme excludes the beacon of the weakest signal received by user mobile device and identifies neighborhood reference points using the other beacon information. This procedure are performed repetitively until K > 0. The simulation results confirm that the proposed scheme outperforms K-Nearest-Neighbor (KNN), Cluster KNN and the conventional Cut-off scheme in terms of accuracy while the constraints are guaranteed to be satisfied.