• Title/Summary/Keyword: Positioning motion

Search Result 350, Processing Time 0.032 seconds

A Study on Measuring of Motion Accuracy of NC Machine Tools(No.1) -about Measuring of Linear Cycle Positioning Accuracy of NC Lathe (NC 공작기계의 운동정도 측정에 관한 연구(제1보) - NC 선반의 직선 사이클 위치결정정도 측정에 관하여 -)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.1
    • /
    • pp.82-88
    • /
    • 1998
  • It is very important to test linear cycle positioning accuracy of NC lathes as it affect all other machines machined by them in industries. For example, if the linear positioning accuracy of x or z-axis directions is bad, the size of works will be wrong and the change-ability will be bad in the assembly of machine parts. In this paper , measuring systems are organized to measure linear displacement of ATC(Automatic tool changer) of NC lathe using laser interferometer, magnescale and tick pulses coming out from computer in order to get data at constant time intervals from the sensors, And each set of data gotten from test is expressed to a plots by computer treatment and the results of linear positioning error motion is estimated to numerics by statistical treatments.

  • PDF

Modeling and Multivariable Control of a Novel Multi-Dimensional Levitated Stage with High Precision

  • Hu Tiejun;Kim Won-jong
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • This paper presents the modeling and multivariable feedback control of a novel high-precision multi-dimensional positioning stage. This integrated 6-degree-of-freedom. (DOF) motion stage is levitated by three aerostatic bearings and actuated by 3 three-phase synchronous permanent-magnet planar motors (SPMPMs). It can generate all 6-DOF motions with only a single moving part. With the DQ decomposition theory, this positioning stage is modeled as a multi-input multi-output (MIMO) electromechanical system with six inputs (currents) and six outputs (displacements). To achieve high-precision positioning capability, discrete-time integrator-augmented linear-quadratic-regulator (LQR) and reduced-order linearquadratic-Gaussian (LQG) control methodologies are applied. Digital multivariable controllers are designed and implemented on the positioning system, and experimental results are also presented in this paper to demonstrate the stage's dynamic performance.

A study on Measuring of Motion Accuracy of NC Machine Tools(No. 2) - about Measuring of Linear Cycle Positioning Accuracy of Machining Center - (NC 공작기계의 운동정도 측정에 관한 연구(제2보) -머시닝 센터의 직선 사이클 위치결정정도 측정에 관하여-)

  • Kim, Yeong Seok
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.3
    • /
    • pp.51-51
    • /
    • 1998
  • It is very important to test linear cycle positioning accuracy of Machining centers as it affect all other machines machined by them in industries. For example, if the linear positioning accuracy of each axes directions is bad, the size of works will be wrong and the change-ability will be bad in the assembly of machine parts. In this paper, measuring systems are organized to measure linear displacements of table or spindle of machine center using laser interferometer, magnescale and tick pulses comming out from computer in order to get data at constant time intervals from the sensors. And each set of data gotten from test is expressed to a plots by computer treatment and the results of linear positioning error motion is estimated to numerics by statistical treatments.

Optimal Home Positioning Algorithm for a 6-DOF Eclipse-II Motion Simulator (6-자유도 Eclipse-II 모션 시뮬레이터의 최적 원점 복귀 알고리즘)

  • Shin, Hyun-Pyo;Kim, Jong-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.4
    • /
    • pp.441-448
    • /
    • 2012
  • This paper describes the optimal home positioning algorithm of Eclipse-II, a new conceptual parallel mechanism for motion simulator. Eclipse-II is capable of translation and 360 degrees continuous rotation in all directions. In unexpected situations such as emergency stop, riders have to be resituated as soon as possible through a shortest translational and rotational path because the return paths are not unique in view of inverse kinematic solution. Eclipse-II is man riding. Therefore, the home positioning is directly related to the safety of riders. To ensure a least elapsed time, ZYX Euler angle inverse kinematics is applied to find an optimal home orientation. In addition, the subsequent decrease of maximum acceleration and jerk values is achieved by combining the optimal return path function with cubic spline, which consequently reduces delivery force and vibration to riders.

A Precision Micro-Positioning System by Using Hinge Mechanism

  • Choi, Hyeun-Seok;Lee, Hak-Joon;Han, Chang-Soo;Kim, Seung-Soo;Kim, Eung-Zu;Choi, Tae-Hoon;Na, Kyoung-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1344-1348
    • /
    • 2003
  • A precision micro-positioning system with a high displacement resolution and wide motion range has been required for industrialized applications in variety fields. This paper discusses the design of a precision micro-rotation stage with flexure hinges. Proposed system is applied to grinding machine for micro parts. Rotational motion is generated with this system. For this systems having a full rotation motion with high precision, a dual servo system with a coarse stage and a fine stage is proposed.

  • PDF

An Algorithmic Study on Free-gyro Positioning System( I ) - Measuring Nadir Angle by using the Motion Rate of a Spin Axis -

  • Jeong, Tae-Gweon;Park, Sok-Chu
    • Journal of Navigation and Port Research
    • /
    • v.31 no.9
    • /
    • pp.751-757
    • /
    • 2007
  • The authors aim to establish the theory necessary for developing free gyro positioning system and focus on measuring the nadir angle by using the motion rate of a free gyro. The azimuth of a gyro vector from the North can be given by using the property of the free gyro. The motion rate of the spin axis in the gyro frame is transformed into the platform frame and again into the NED (north-east-down) navigation frame. The nadir angle of a gyro vector is obtained by using the North components of the motion rate of the spin axis in the NED frame. The component has to be transformed into the horizontal component of the gyro by using the azimuth of the gyro vector and then has to be integrated over the sampling interval.

Optimal Design of 3D Printer based Piezo-driven Vertical Micro-positioning Stage (3D 프린터 기반 수직형 마이크로 모션 스테이지의 최적설계)

  • Kim, Jung Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.1
    • /
    • pp.78-85
    • /
    • 2017
  • This paper presents the development of a 3D printer based piezo-driven vertical micro-positioning stage. The stage consists of two flexure bridge structures which amplify and transfer the horizontal motion of the piezo-element into vertical motion of the end-effector. The stage is fabricated with ABS material using a precision 3D printer. This enables a one-body design eliminating the need for assembly, and significantly increases the freedom in design while shortening fabrication time. The design of the stage was optimized using response surface analysis method. Experimental results are presented which demonstrate 100nm stepping in the vertical out-of-plane direction. The results demonstrate the future possibilities of applying 3D printers and ABS material in fabricating linear driven motion stages.

Development of On-machine Flatness Measurement Method (평면도 기상 측정 방법 개발)

  • 장문주;홍성욱
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.187-193
    • /
    • 2003
  • This paper presents an on-machine measurement method of flatness error fur surface machining processes. There are two kinds of on-machine measurement methods available to measure flatness errors in workpieces: i.e., surface scanning method and sensor scanning method. However, motion errors are often engaged in both methods. This paper proposes an idea to realize a measurement system of flatness errors and its rigorous application for estimation of motion errors of the positioning system. The measurement system is made by modifying the straightness measurement system, which consists of a laser, a CCD camera and processing system, a sensor head, and some optical units. The sensor head is composed of a retroreflector, a ball and ball socket, a linear motion guide unit and adjustable arms. The experimental .results show that the proposed method is useful to identify flatness errors of machined workpieces as well as motion errors of positioning systems.

Design of Trajectory Generator for Performance Evaluation of Navigation Systems

  • Jae Hoon Son;Sang Heon Oh;Dong-Hwan Hwang
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.4
    • /
    • pp.409-421
    • /
    • 2023
  • In order to develop navigation systems, simulators that provide navigation sensors data are required. A trajectory generator that simulates vehicle motion is needed to generate navigation sensors data in the simulator. In this paper, a trajectory generator for evaluating navigation system performance is proposed. The proposed trajectory generator consists of two parts. The first part obtains parameters from the motion scenario file whereas the second part generates position, velocity, and attitude from the parameters. In the proposed trajectory generator six degrees of freedom, halt, climb, turn, accel turn, spiral, combined, and waypoint motions are given as basic motions with parameters. These motions can be combined to generate complex trajectories of the vehicle. Maximum acceleration and jerk for linear motion and maximum angular acceleration and velocity for rotational motion are considered to generate trajectories. In order to show the usefulness of the proposed trajectory generator, trajectories were generated from motion scenario files and the results were observed. The results show that the proposed trajectory generator can accurately simulate complex vehicle motions that can be used to evaluate navigation system performance.

Development of a Hydrostatic Guideway Driven by the Linear Motor (리니어모터를 이용한 초정밀 유정압안내면 개발)

  • 박천홍;오윤진;황주호;이득우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.139-144
    • /
    • 2004
  • In order to discuss the availability of hydrostatic guideways driven by the coreless linear motor to ultra precision machine tools, a prototype of guideway is designed and tested in this research. A coreless linear DC motor with the continuous force of 156 N and a laser scale with the resolution of 0.01 ${\mu}{\textrm}{m}$ are used as the feeding system. The experiments are performed on the static stuffiness, motion accuracy, positioning accuracy, microstep response and variation of velocity. The guideway has the infinite axial stillness within 50 N of applied load, and by the motion error compensation method using the Active Controlled Capillary, 0.08 ${\mu}{\textrm}{m}$ of linear motion error and 0.1 arcsec of angular motion error are acquired. The guideway also has 0.21 ${\mu}{\textrm}{m}$ of positioning error and 0.09 ${\mu}{\textrm}{m}$ of repeatability, and it shows the stable response against the 0.01 ${\mu}{\textrm}{m}$ resolution step command. The velocity variation of feeding system is less than 0.6 %. From these results, it is confirmed that the hydrostatic guideway driven by the coreless linear motor is very useful fur the ultra precision machine tools.