• 제목/요약/키워드: Positioning errors

검색결과 501건 처리시간 0.021초

수중탐상로봇시스템의 오차분석 및 보정 (Calibration of an underwater robotic inspection system)

  • 장종훈;김재열;김재희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.378-378
    • /
    • 2000
  • The permissible positioning error of the transducer used in reactor inspection must be within 10 mm. To implement the required precision it is necessary to manufacture all components affecting the positioning mechanism correctly and precisely. In addition, it is also necessary to handle error factors accurately. This paper describes the activities of the findings and corrections of the errors which were occurred in experiments. Those activities are; i) Categorization of error factors, ii) Cause analysis of errors, iii) Correction of errors founded in experiments by the analysis of laser induction type and by the validation of real measurement of horizontal, vertical baselines.

  • PDF

CNC 공작기계용 온라인 실시간 위치오차 보정시스템의 개발 (Development of Online Realtime Positioning Error Compensation System for CNC Machine Tools)

  • 정재일;김종원;남원우;이상조
    • 한국정밀공학회지
    • /
    • 제16권10호
    • /
    • pp.45-52
    • /
    • 1999
  • The online realtime positioning error compensation system 'SKY-PACS' is developed to correct geometric errors, thermal errors and tool deflection errors induced by cutting forces on the vertical machining center. 'SKY-PACS' communicates position commands and position compensation signals with the CNC controller at 100Hz, which is CNC control frequency. So the compensation procedure can be applied during axis movement. Using 'SKY-PACS', Maximum 1 axis positioning accuracy was corrected from 5{\mu}m$ to 2{\mu}m$and the squareness error of X-Y table was corrected from 51{\mu}m$/m to below 4{\mu}m$/m. The error compensation under the cutting condition is carried out by ISO10791-7. And the measurement of test-pieces shows that the roundness is corrected rom 8{\mu}m$ to below 5{\mu}m$.

  • PDF

GPS를 이용한 위치 결정에서의 오차 해석 (An Error Analysis of GPS Positioning)

  • 박찬식
    • 제어로봇시스템학회논문지
    • /
    • 제7권6호
    • /
    • pp.550-557
    • /
    • 2001
  • There are several applications and error analysis methods using GPS(Global Positioning System) In most analysis positioning and timing errors are represented as the multiplication of DOP(Dilution Of Precision) and measurement errors, which are affected by the receiver and measurement type. Therefore, lots of DOPs are defined and used to analyze and predict the performance of positioning and timing systems. In this paper, the relationships between these DOPs are investigated in detail, The relationships between GDOP(Geometric DOP), PDOP(Position DOP) and TDOP(Time DOP) in the absolute positioning are de-rived. Using these relationships, the affect of clock bias is analyzed. The relationships between RGDOP(Relative DOP) and PDOP are also derived in relative positioning where the single difference and double dif-ference techniques are used. From the results, it is expected that using the common clock will give better performance when the single difference technique is used while the effects of clock is eliminate when the double difference technique is used. Finally, the error analyses of dual frequency receivers show that the narrow lane measurements give more accurate results than wide line of or L1. L2 independent measurements.

  • PDF

Analysis of Factors Affecting Performance of Integrated INS/SPR Positioning during GPS Signal Blockage

  • Kang, Beom Yeon;Han, Joong-hee;Kwon, Jay Hyoun
    • 한국측량학회지
    • /
    • 제32권6호
    • /
    • pp.599-606
    • /
    • 2014
  • Since the accuracy of Global Positioning System (GPS)-based vehicle positioning system is significantly degraded or does not work appropriately in the urban canyon, the integration techniques of GPS with Inertial Navigation System (INS) have intensively been developed to improve the continuity and reliability of positioning. However, its accuracy is degraded as INS errors are not properly corrected due to the GPS signal blockage. Recently, the image-based positioning techniques have been started to apply for the vehicle positioning for the advanced in processing techniques as well as the increased the number of cars installing the camera. In this study, Single Photo Resection (SPR), which calculates the camera exterior orientation parameters using the Ground Control Points (GCPs,) has been integrated with the INS/GPS for continuous and stable positioning. The INS/GPS/SPR integration was implemented in both of a loosely and a tightly coupled modes, based on the Extended Kalman Filter (EKF). In order to analyze the performance of INS/SPR integration during the GPS outage, the simulation tests were conducted with a consideration of factors affecting SPR performance. The results demonstrate that the accuracy of INS/SPR integration is depended on magnitudes of the GCP errors and SPR processing intervals. Additionally, the simulation results suggest some required conditions to achieve accurate and continuous positioning, used the INS/SPR integration.

평면도 기상 측정 방법 개발 (Development of On-machine Flatness Measurement Method)

  • 장문주;홍성욱
    • 한국정밀공학회지
    • /
    • 제20권3호
    • /
    • pp.187-193
    • /
    • 2003
  • This paper presents an on-machine measurement method of flatness error fur surface machining processes. There are two kinds of on-machine measurement methods available to measure flatness errors in workpieces: i.e., surface scanning method and sensor scanning method. However, motion errors are often engaged in both methods. This paper proposes an idea to realize a measurement system of flatness errors and its rigorous application for estimation of motion errors of the positioning system. The measurement system is made by modifying the straightness measurement system, which consists of a laser, a CCD camera and processing system, a sensor head, and some optical units. The sensor head is composed of a retroreflector, a ball and ball socket, a linear motion guide unit and adjustable arms. The experimental .results show that the proposed method is useful to identify flatness errors of machined workpieces as well as motion errors of positioning systems.

공작기계의 오차요소 측정을 통한 3차원 위치정밀도 향상 (The enhancement of 3-dimensional positioning accuracy by measuring error factors for CNC machine tools)

  • 손진욱;서석환;정세용;이응석;위현곤
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.260-265
    • /
    • 1994
  • Efforts have been devoted to developing rapid and accurate methods for measuring the errors of machine tools. The method os measurement and calibration of machine tool errors should be general and efficient. The objective of this study is to show in detail the full sequence from the measurement of errors factors to the verification of the positioning accuracy after compensation for the volumetric error. In this paper, we described the steps in measuring the volumetric error parameters, a general error model composed of error parameters, temperature, and the desired position. The validity of the error calibration methods proposed in this paper was tested using a vertical 3-axis CNC machine with a laser interferometer and a ball bar.

  • PDF

단기선 측지 성능 향상을 위한 GPS-RTK 알고리즘 개발 (Development of GPS-RTK Algorithm for Improving Geodetic Performance in Short Baseline)

  • 최병규;이상정;박종욱;백정호
    • 한국측량학회지
    • /
    • 제27권4호
    • /
    • pp.461-467
    • /
    • 2009
  • 상대측위 기법은 공통오차를 제거 또는 감소하여 상대적으로 높은 위치정확도를 얻을 수 있기 때문에 주로 고정밀 GPS 위치정보 생성에 사용된다. 본 연구에서는 높은 위치정밀도를 산출할 수 있는 RTK 알고리즘을 개발하였고, 또한 매 관측시간별로 위치정보와 모호정수를 추정할 수 있도록 필터를 구성하였다. 상태 변수 추정을 위해 확장칼만필터를 사용하였고, 모호정수 결정을 위해 Modified LAMBDA 방법이 고려되었다. 자료처리는 단기 선에서 GPS 단일주파수와 이중주파수를 이용하여 다양한 측위를 수행하였다. 측위결과에 대한 검증절차는 Bernese 5.0 소프트웨어의 결과와 비교하였고, 각 위치오차에 대한 통계값과 모호정수 결정율을 제시하였다.

UWB 및 MEMS IMU 복합 센서 기반의 위치 추적 시스템 (Position Tracking System Based on UWB and MEMS IMU)

  • 권성근
    • 한국멀티미디어학회논문지
    • /
    • 제22권9호
    • /
    • pp.1011-1019
    • /
    • 2019
  • In this paper, we propose a system that can more precisely identify and monitor the position of the tool used in the assembling workplace such as automobile production. The proposed positioning monitoring system is a combination of UWB communication module and MEMS IMU sensor. Since UWB does not need modulation and demodulation function and has low power density, UWB is widely used in indoor positioning field. However, it may cause positioning error due to errors in RF transmission and reception process, which may cause positioning accuracy. Therefore, in this paper, we propose an algorithm that uses IMU as an auxiliary means to compensate for errors that may occur in positioning using only UWB. The tag and anchor of UWB module measure the transmission / reception time by transmitting signals to each other and then estimate the distance between tag and anchor. The MEMS IMU sensor serves to provide positioning calibration information. The tag, which is a mobile node and attached to a moving tool, measures the three-dimensional position of the tool and transfers the coordinate data to the anchor. Thus, it is possible to confirm whether or not the specific tool is properly used according to the prescribed regulations.

Evaluation of Single-Frequency Precise Point Positioning Performance Based on SPARTN Corrections Provided by the SAPCORDA SAPA Service

  • Kim, Yeong-Guk;Kim, Hye-In;Lee, Hae-Chang;Kim, Miso;Park, Kwan-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제10권2호
    • /
    • pp.75-82
    • /
    • 2021
  • Fields of high-precision positioning applications are growing fast across the mass market worldwide. Accordingly, the industry is focusing on developing methods of applying State-Space Representation (SSR) corrections on low-cost GNSS receivers. Among SSR correction types, this paper analyzes Safe Position Augmentation for Real Time Navigation (SPARTN) messages being offered by the SAfe and Precise CORrection DAta (SAPCORDA) company and validates positioning algorithms based on them. The first part of this paper introduces the SPARTN format in detail. Then, procedures on how to apply Basic-Precision Atmosphere Correction (BPAC) and High-Precision Atmosphere Correction (HPAC) messages are described. BPAC and HPAC messages are used for correcting satellite clock errors, satellite orbit errors, satellite signal biases and also ionospheric and tropospheric delays. Accuracies of positioning algorithms utilizing SPARTN messages were validated with two types of positioning strategies: Code-PPP using GPS pseudorange measurements and PPP-RTK including carrier phase measurements. In these performance checkups, only single-frequency measurements have been used and integer ambiguities were estimated as float numbers instead of fixed integers. The result shows that, with BPAC and HPAC corrections, the horizontal accuracy is 46% and 63% higher, respectively, compared to that obtained without application of SPARTN corrections. Also, the average horizontal and vertical RMSE values with HPAC are 17 cm and 27 cm, respectively.

GNSS Error Generation Simulator for Signal Quality Monitoring of KASS

  • Ji, Gun-Hoon;Choi, Jong-Yeoun;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제10권4호
    • /
    • pp.341-351
    • /
    • 2021
  • In this paper, a GNSS error generation simulator for Signal Quality Monitoring (SQM) is implemented by using Matlab based on mathematical models derived from the effect of GNSS signal and measurement errors. The GNSS signal measurement errors of interest in this paper include three cases such as Evil Wave Form (EWF), Multipath (MP) and Radio Frequency Interference (RFI). In order to verify the validity of the generated measurement errors, a simple form of metrics for detecting and monitoring GNSS errors is included in the simulator. The GNSS errors generated by the simulator are added to the GNSS measurement data from commercial GNSS receiver in real time, and then, the SQM is tested for various scenarios of each case configured by scenario setting of the user.