• Title/Summary/Keyword: Positioning Model

Search Result 780, Processing Time 0.029 seconds

Ionospheric Model Performance of GPS, QZSS, and BeiDou on the Korean Peninsula

  • Serim Bak;Beomsoo Kim;Su-Kyung Kim;Sung Chun Bu;Chul Soo Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.2
    • /
    • pp.113-119
    • /
    • 2023
  • Satellite navigation systems, with the exception of the GLObal NAvigation Satellite System (GLONASS), adopt ionosphere models and provide ionospheric coefficients to single-frequency users via navigation messages to correct ionospheric delay, the main source of positioning errors. A Global Navigation Satellite System (GNSS) mostly has its own ionospheric models: the Klobuchar model for Global Positioning System (GPS), the NeQuick-G model for Galileo, and the BeiDou Global Ionospheric delay correction Model (BDGIM) for BeiDou satellite navigation System (BDS)-3. On the other hand, a Regional Navigation Satellite System (RNSS) such as the Quasi-Zenith Satellite System (QZSS) and BDS-2 uses the Klobuchar Model rather than developing a new model. QZSS provides its own coefficients that are customized for its service area while BDS-2 slightly modifies the Klobuchar model to improve accuracy in the Asia-Pacific region. In addition, BDS broadcasts multiple ionospheric parameters depending on the satellites, unlike other systems. In this paper, we analyzed the different ionospheric models of GPS, QZSS, and BDS in Korea. The ionospheric models of QZSS and BDS-2, which are based in Asia, reduced error by at least 25.6% compared to GPS. However, QZSS was less accurate than GPS during geomagnetic storms or at low latitude. The accuracy of the models according to the BDS satellite orbit was also analyzed. The BDS-2 ionospheric model showed an error reduction of more than 5.9% when using GEO coefficients, while in BDS-3, the difference between satellites was within 0.01 m.

KINEMATIC GPS POSITIONING WITH NETWORK-DERIVED IONOSPHERIC DELAYS

  • Hong, Chang-Ki;Grejner-Brzezinska, Dorota A.;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.386-389
    • /
    • 2007
  • Currently, fast and accurate long baseline positioning in kinematic mode is a challenging topic, but positional accuracy can be improved with the help of the network-derived external ionospheric corrections. To provide not only ionospheric corrections, but also their variances, satellite-by-satellite interpolation for the ionospheric delays is performed using the least-squares collocation (LSC) method. Satellite-by-satellite interpolation has the advantage in that the vertical projection used in single-layer ionospheric model is not required. Also, more reliable user positioning and the corresponding accuracy assessment can be obtained by providing not only external ionospheric corrections but also their variances. The rover positioning with and without the external ionospheric delays in both rapid-static and kinematic mode was performed and analyzed. The numerical results indicate that the improvement in the positioning quality is achieved using the proposed method. With the TAMDEF network in Antarctica, 18 % improvement in mean time-to-fix in kinematic mode was achieved.

  • PDF

Joint Access Point Selection and Local Discriminant Embedding for Energy Efficient and Accurate Wi-Fi Positioning

  • Deng, Zhi-An;Xu, Yu-Bin;Ma, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.3
    • /
    • pp.794-814
    • /
    • 2012
  • We propose a novel method for improving Wi-Fi positioning accuracy while reducing the energy consumption of mobile devices. Our method presents three contributions. First, we jointly and intelligently select the optimal subset of access points for positioning via maximum mutual information criterion. Second, we further propose local discriminant embedding algorithm for nonlinear discriminative feature extraction, a process that cannot be effectively handled by existing linear techniques. Third, to reduce complexity and make input signal space more compact, we incorporate clustering analysis to localize the positioning model. Experiments in realistic environments demonstrate that the proposed method can lower energy consumption while achieving higher accuracy compared with previous methods. The improvement can be attributed to the capability of our method to extract the most discriminative features for positioning as well as require smaller computation cost and shorter sensing time.

Indoor Positioning Using WLAN Signal Strength (무선랜의 신호세기를 이용한 실내 측위)

  • Kim, Suk-Ja;Lee, Jin-Hyun;Jee, Gyu-In;Lee, Jang-Gyu;Kim, Wuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.8
    • /
    • pp.742-747
    • /
    • 2004
  • Outdoors we can easily acquire our accurate location by GPS. However, the GPS signal can't be acquired indoors because of its weak signal power level. Adequate positioning method is demanded for many indoor positioning applications. At present, wireless local area network (WLAN) is widely installed in various areas such as airport, campus, and park. This paper proposes a positioning algorithm using WLAN signal strength to provide the position of the WLAN user indoors. There are two methods for WLAN based positioning, the signal propagation method uses signal strength model over space and the empirical method uses RF power propagation database. The proposed method uses the probability distribution of the power propagation and the maximum likelihood estimation (MLE) algorithm based on power strength DB. Test results show that the proposed method can provide reasonably accurate position information.

Experimental Analysis of Kinematic Network-Based GPS Positioning Technique for River Bathymetric Survey

  • Lee, Hungkyu;Lee, Jae-One;Kim, Hyundo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.4
    • /
    • pp.221-233
    • /
    • 2016
  • This paper deals with performance assessment of the kinematic network-based GPS positioning technique with a view to using it for ellipsoidally referenced bathymetric surveys. To this end, two field trials were carried out on a land vehicle and a surveying vessel. Single-frequency GPS data acquired from these tests were processed by an in-house software which equips the network modeling algorithm with instantaneous ambiguity resolution procedure. The results reveals that ambiguity success rate based on the network model is mostly higher than 99.0%, which is superior to that of the single-baseline model. In addition, achievable accuracy of the technique was accessed at ${\pm}1.6cm$ and 2.7 cm with 95% confidence level in horizontal and vertical component respectively. From bathymetric survey at the West Nakdong River in Busan, Korea, 3-D coordinates of 2,011 points on its bed were computed by using GPS-derived coordinates, attitude, measured depth and geoid undulation. Note that their vertical coordinates are aligned to the geoid, the so-called orthometric height which is widely adopted in river engineering. Bathymetry was constructed by interpolating the coordinate set, and some discussion on its benefit was given at the end.

Development of End-to-end Numerical Simulator for Next Generation GNSS Signal Design

  • Shin, Heon;Han, Kahee;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.4
    • /
    • pp.153-164
    • /
    • 2019
  • This paper presents the development of an end-to-end numerical simulator for signal design of the next generation global navigation satellite system (GNSS). The GNSS services are an essential element of modern human life, becoming a core part of national infra-structure. Several countries are developing or modernizing their own positioning and timing system as their demand, and South Korea is also planning to develop a Korean Positioning System (KPS) based on its own technology, with the aim of operation in 2034. The developed simulator consists of three main units such as a signal generator, a channel unit, and a receiver. The signal generator is constructed based on the actual navigation satellite payload model. For channels, a simple Gaussian channel and land mobile satellite (LMS) multipath channel environments are implemented. A software receiver approach based on a commercial GNSS receiver model is employed. Through the simulator proposed in this paper, it is possible to simulate the entire transceiver chain process from signal generation to receiver processing including channel effect. Finally, numerical simulation results for a simple example scenario is analyzed. The use of the numerical signal simulator in this paper will be ideally suited to design a new navigation signal for the upcoming KPS by reducing the research and development efforts, tremendously.

A Short-Term Prediction Method of the IGS RTS Clock Correction by using LSTM Network

  • Kim, Mingyu;Kim, Jeongrae
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.4
    • /
    • pp.209-214
    • /
    • 2019
  • Precise point positioning (PPP) requires precise orbit and clock products. International GNSS service (IGS) real-time service (RTS) data can be used in real-time for PPP, but it may not be possible to receive these corrections for a short time due to internet or hardware failure. In addition, the time required for IGS to combine RTS data from each analysis center results in a delay of about 30 seconds for the RTS data. Short-term orbit prediction can be possible because it includes the rate of correction, but the clock correction only provides bias. Thus, a short-term prediction model is needed to preidict RTS clock corrections. In this paper, we used a long short-term memory (LSTM) network to predict RTS clock correction for three minutes. The prediction accuracy of the LSTM was compared with that of the polynomial model. After applying the predicted clock corrections to the broadcast ephemeris, we performed PPP and analyzed the positioning accuracy. The LSTM network predicted the clock correction within 2 cm error, and the PPP accuracy is almost the same as received RTS data.

Position control of the frictionless positioning device suspended by cone-shaped active magnetic bearings (원추형 자기 베어링 지지 무마찰 구동장치의 위치제어)

  • Jeong, Ho-Seop;Lee, Chong-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.3
    • /
    • pp.181-187
    • /
    • 1996
  • A frictionless positioning device using cone-shaped active magnetic bearings(AMBs) is developed, which is driven by a brushless DC motor equipped with resolver. The cone-shaped AMB feature that the structure is simple and yet the five d.o.f. rotor motion is controlled by four magnet pairs. A linearized dynamic model, which accounts for the relationship between input voltage and output current in the cone-shaped magnet, is developed and the azimuth motion of the frictionless positioning device is modeled as the second order system. The feedback controller is designed by using linear quadratic regulator with integral action optimal control law so that the cone-shaped AMB system is stabilized and the frictionless positioning device gets the zero steady state. It is observed that the linearized dynamic model is adequate and the frictionless positioning device can achieve the tracking accuracy within the sensor resolution.

  • PDF

An Education Model of a Nano-Positioning System for Mechanical Engineers

  • Lee Dong-Yeon;Gweon Dae-Gab
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1702-1715
    • /
    • 2006
  • The increasing use of nano-positioners in a wide variety of laboratory and industrial applications has created a need for nano-mechatronics education in all engineering disciplines. The subject of nano-mechatronics is broad and interdisciplinary. This article focuses on the way nano-mechatronics is taught in department of mechanical engineering at Korea Advanced Institute of Science and Technology (KAIST). As one model of nano-positioning systems, design and experimental methodology is presented in this article. For design phase, the stiffness and resonant frequencies are found analytically and verified by using a commercial finite element analysis program. Next, for experimental phase, various tests are performed to access the performances of the designed nano-positioner, for example, sine-tracking, multi-step response and travel-range check etc. Finally, the definition of 'separation frequency' is described and some comments are discussed.

Preliminary Analysis on the Effects of Tropospheric Delay Models on Geosynchronous and Inclined Geosynchronous Orbit Satellites

  • Lee, Jinah;Park, Chandeok;Joo, Jung-Min
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.4
    • /
    • pp.371-377
    • /
    • 2021
  • This research proposes the best combination of tropospheric delay models for Korean Positioning System (KPS). The overall results are based on real observation data of Japanese Quasi-Zenith satellite system (QZSS), whose constellation is similar to the proposed constellation of KPS. The tropospheric delay models are constructed as the combinations of three types of zenith path delay (ZPD) models and four types of mapping functions (MFs). Two sets of International GNSS Service (IGS) stations with the same receiver are considered. Comparison of observation residuals reveals that the ZPD models are more influential to the measurement model rather than MFs, and that the best tropospheric delay model is the combination of GPT3 with 5 degrees grid and Vienna Mapping Function 1 (VMF1). While the bias of observation residual depends on the receivers, it still remains to be further analyzed.