• Title/Summary/Keyword: Positioning Model

Search Result 776, Processing Time 0.024 seconds

Trajectory Following Control Using Cogging Force Model in Linear Positioning System

  • Chung, Myung-Jin;Gweon, Dae-Gab
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.3
    • /
    • pp.62-68
    • /
    • 2002
  • To satisfy the requirement of the one axis linear positioning system, which is following control of the desired trajectory without following error and is the high positioning accuracy, feed-forward loop having cogging force model is proposed. In the one axis linear positioning system with linear PM motor, cogging force acting as disturbance is modeled analytically. Analytic model of cogging force is verified by result measured from positioning system constructed with linear PM motor. Measured result is very similar with proposed analytic model. Cogging force model is used as feet forward loop in control scheme of linear positioning system. Cogging force feed-forward'loop is obtained from analytic model of cogging farce. Trajectory following error is reduced from 300nm to 100nm by applying the proposed cogging farce feed-forward loop. By using analytic model of cogging force, the control scheme is simplified. Also this analytic model is applicable to calculation of characteristic value of positioning system in design process.

A Testbed of Performance Evaluation for Fingerprint Based WLAN Positioning System

  • Zhao, Wanlong;Han, Shuai;Meng, Weixiao;Zou, Deyue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2583-2605
    • /
    • 2016
  • Fingerprint positioning is a main stream and key technique for seamless positioning systems. In this paper, we develop a performance evaluation testbed for fingerprint based Wireless Local Area Network (WLAN) positioning system. The testbed consists of positioning server, positioning terminal, Access Point (AP) units, positioning accuracy analysis system and testing scenarios. Different from other testbeds tended to focus on testing in same situation, in the proposed testbed, a couple of scenarios are set to test the positioning system including indoor and outdoor environments. Handset-side positioning mode and network-side positioning mode are provided simultaneously. Variety of motion models, such as static model, low-speed model and high-speed model are considered as well as different positioning algorithms. Finally, some implementation cases are analyzed to verify the credibility of the testbed.

Micro-positioning of a Smart Structure using an Enhanced Stick-slip Model (향상된 스틱-슬립 마찰 모델을 이용한 스마트 구조물의 마이크로 위치제어)

  • Lee, Chul-Hee;Jang, Min-Gyu;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.230-236
    • /
    • 2008
  • In this paper, a model-based stick-slip compensation for the micro-positioning is proposed using an enhanced stick-slip model based on statistical rough surface contact model. The smart structure is comprised with PZT (lead (Pb) zirconia (Zr) Titanate (Ti)) based stack actuator incorporating with the PID (Proportional-Integral-Derivative) control algorithm, mechanical displacement amplifier and positioning devices. For the stick-slip compensation, the elastic-plastic static friction model is used considering the elastic-plastic asperity contact in the rough surfaces statistically. Mathematical model of system for the positioning apparatus was derived from the dynamic behaviors of structural parts. PID feedback control algorithms with the developed stick-slip model as well as feedforward friction compensator are formulated for achieving the accurate positioning performance. Experimental results are provided to show the performances of friction control using the developed positioning apparatus.

  • PDF

Micro-positioning of a Smart Structure Using an Enhanced Stick-slip Model (향상된 스틱-슬립 마찰 모델을 이용한 스마트 구조물의 마이크로 위치제어)

  • Lee, Chul-Hee;Jang, Min-Gyu;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.11
    • /
    • pp.1134-1142
    • /
    • 2008
  • In this paper, a model-based stick-slip compensation for the micro-positioning is proposed using an enhanced stick-slip model based on statistical rough surface contact model. The smart structure is comprised with PZT(lead (Pb) zirconia(Zr) Titanate(Ti)) based stack actuator incorporating with the PID(proportional-integral-derivative) control algorithm, mechanical displacement amplifier and positioning devices. For the stick-slip compensation, the elastic-plastic static friction model is used considering the elastic-plastic asperity contact in the rough surfaces statistically. Mathematical model of system for the positioning apparatus was derived from the dynamic behaviors of structural parts. PID feedback control algorithms with the developed stick-slip model as well as feedforward friction compensator are formulated for achieving the accurate positioning performance. Experimental results are provided to show the performances of friction control using the developed positioning apparatus.

Improved IEEE 802.11 RSSI Attenuation Log Model by Weighted Fitting Method (가중치 적합 기법을 이용한 개선된 IEEE 802.11 RSSI 감쇠 로그 모델)

  • Shin, Seokhun;Park, Joon Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.1
    • /
    • pp.70-75
    • /
    • 2015
  • With the development of communication technologies and smartphone, requirements of positioning accuracy for LBS (Location Based Service) are becoming increasingly important. LBS is a service which offers the information or entertainment based on a location to users. Therefore, positioning is very important for LBS. Among many positioning methods, IEEE 802.11 WLAN positioning measures the distance using the RSSI (Received Signal Strength Indicator) attenuation log model. Thus in order to enhance positioning, we modify the IEEE 802.11 RSSI attenuation log model by adaptive weighting method. In this paper, we propose improved IEEE 802.11 RSSI attenuation log model for enhanced indoor positioning.

Case Study on Business Model for Indoor Positioning System (실내 위치추적 시스템의 비즈니스 모델 사례 연구)

  • Park, Sang Hyuk;Park, Young Sik;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.4
    • /
    • pp.64-69
    • /
    • 2013
  • Recently, users who are interested in the service at indoor spaces is increasing. An indoor positioning system can minimize a range of positioning error using a variety of wireless communication infrastructure. Also, the system improves an indoor positioning accuracy by combining a mobile communication network. However, flexible positioning technologies regardless of an environment are insufficient. Therefore, this is time for a systematic study on an indoor positioning system business model. This paper classify differences between an indoor positioning system technology and outdoor positioning system technology. And we research a construction and application of the indoor positioning system that is adapted a wireless communication system (Wi-Fi, Bluetooth, RFID, UWE, Fingerprint, etc.) in domestic and foreign. We present a successful model of indoor positioning system and the development for future systems.

Assisted GNSS Positioning for Urban Navigation Based on Receiver Clock Bias Estimation and Prediction Using Improved ARMA Model

  • Xia, Linyuan;Mok, Esmond
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.395-400
    • /
    • 2006
  • Among the various error sources in positioning and navigation, the paper focuses on the modeling and prediction of receiver clock bias and then tries to achieve positioning based on simulated and predicted clock bias. With the SA off, it is possible to model receiver clock bias more accurately. We selected several types of GNSS receivers for test using ARMA model. To facilitate prediction with short and limited sample pseudorange observations, AR and ARMA are compared, and the improved AR model is presented to model and predict receiver clock bias based on previous solutions. Our work extends to clock bias prediction and positioning based on predicted clock bias using only 3 satellites that is usually the case under urban canyon situation. In contrast to previous experiences, we find that a receiver clock bias can be well modeled using adopted ARMA model. Test has been done on various types of GNSS receivers to show the validation of developed model. To further develop this work, we compare solution conditions in terms of DOP values when point positioning is conducted using 3 satellites to simulate urban positioning environment. When condition allows, height component is derived from other ways and can be set as known values. Given this condition, location is possible using less than 2 GNSS satellites with fixed height. Solution condition is also discussed for this background using mode of constrained positioning. We finally suggest an effective predictive time span based on our test exploration under varied conditions.

  • PDF

Development of a Virtual Reference Station-based Correction Generation Technique Using Enhanced Inverse Distance Weighting

  • Tae, Hyunu;Kim, Hye-In;Park, Kwan-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.2
    • /
    • pp.79-85
    • /
    • 2015
  • Existing Differential GPS (DGPS) pseudorange correction (PRC) generation techniques based on a virtual reference station cannot effectively assign a weighting factor if the baseline distance between a user and a reference station is not long enough. In this study, a virtual reference station DGPS PRC generation technique was developed based on an enhanced inverse distance weighting method using an exponential function that can maximize a small baseline distance difference due to the dense arrangement of DGPS reference stations in South Korea, and its positioning performance was validated. For the performance verification, the performance of the model developed in this study (EIDW) was compared with those of typical inverse distance weighting (IDW), first- and second-order multiple linear regression analyses (Planar 1 and 2), the model of Abousalem (1996) (Ab_EXP), and the model of Kim (2013) (Kim_EXP). The model developed in the present study had a horizontal accuracy of 53 cm, and the positioning based on the second-order multiple linear regression analysis that showed the highest positioning accuracy among the existing models had a horizontal accuracy of 51 cm, indicating that they have similar levels of performance. Also, when positioning was performed using five reference stations, the horizontal accuracy of the developed model improved by 8 ~ 42% compared to those of the existing models. In particular, the bias was improved by up to 27 cm.

A Review on Marketing Models' Implications to Market Positioning: With a Focus on the Hauser and Shugan Model (마케팅 모형의 포지셔닝 관련 시사점에 대한 고찰: Hauser and Shugan 모형을 중심으로)

  • Won, Jee-Sung
    • Journal of Distribution Science
    • /
    • v.14 no.11
    • /
    • pp.61-73
    • /
    • 2016
  • Purpose - Marketing scholars have developed various types of mathematical models for describing marketing phenomenon, because there is no single model comprehensive enough to incorporate all the relevant marketing phenomena. This study tries to summarize the behavioral foundations and the mathematical derivations of the most widely used marketing models and discusses their strategic implications. This study selected four representative marketing models: multinomial logit(MNL) model, elimination-by-aspects(EBA) model, Hauser and Shugan model and Bass diffusion model. Especially, this study focuses on Hauser and Shugan(1983)'s Defender model and discusses the model's behavioral foundation and its implications. Research design, data, and methodology - Of the four selected model, the multinomial logit model is selected as the basic normative model and the other three models are described as descriptive models in contrast. Starting the discussion from the multinomial logit model, this study explains what important strategic variables are incorporated in each of the four models. The IIA(independence of irrelevant alternatives) axiom and Luce choice model is also discussed in relation to the multinomial logit model. The concept of 'efficient frontier' is discussed in relation to Hauser and Shugan's model. Graphs and tables are used to represent the key implications. No empirical study is included. Results - The analyses of the mathematical marketing models are shown to be very useful in understanding the essence of positioning strategy. The multinomial logit model implies the importance of increasing utility or consumer preference level. The EBA model implies the importance of lowering the inter-brand similarity and dominating the competitors. Hauser and Shugan model implies the importance of considering customer heterogeneity distribution in selecting the target market. Conclusions - It is shown that the concepts of 'efficient frontier' is useful in understanding the effectiveness of positioning strategy. Market positioning can be understood as occupying some place on the efficient frontier. The important strategic implications can be summarized as follows: Always try to increase customer preference by providing what they value, and differentiate from competing alternatives as much as possible. The best positioning strategy is to dominate all the competitors and the worst is to be dominated by the competitors.

A modified error-oriented weight positioning model based on DV-Hop

  • Wang, Penghong;Cai, Xingjuan;Xie, Liping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.405-423
    • /
    • 2022
  • The distance vector-hop (DV-Hop) is one of the emblematic algorithms that use node connectivity for locating, which often accompanies by a large positioning error. To reduce positioning error, the bio-inspired algorithm and weight optimization model are introduced to address positioning. Most scholars argue that the weight value decreases as the hop counts increases. However, this point of view ignores the intrinsic relationship between the error and weight. To address this issue, this paper constructs the relationship model between error and hop counts based on actual communication characteristics of sensor nodes in wireless sensor network. Additionally, we prove that the error converges to 1/6CR when the hop count increase and tendency to infinity. Finally, this paper presents a modified error-oriented weight positioning model, and implements it with genetic algorithm. The experimental results demonstrate excellent robustness and error removal.