• Title/Summary/Keyword: Positioning Method

Search Result 1,694, Processing Time 0.029 seconds

Measurement and Analysis for Positioning Control Characteristics using Encoder Signal of NC Machine Controller (공작기계용 NC제어기의 엔코더 신호를 이용한 위치제어 특성 측정 및 분석)

  • Kim Jong-Gil;Lee Eung-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.311-317
    • /
    • 2005
  • NC controller parameters are fixed when the controller is combined with a machine. However, the characteristics of controller could be changed as it has being used by the machine or other environmental conditions. Ultimately, it results in tool positioning accuracy changing. The loading torque in servo motor also influences on the positioning accuracy. This study focus on a measuring and analysing method for verifying the angular positioning accuracy of NC servo motor. We used a high resolution A/D converter for acquiring analogue signal of rotary encoder in servo motor. Generating tool path by the combination of axial movements (X,Y,Z) is compared with the encoder signals with the servo motor torque. The current variation signal is also read from the servo motor power using a hall sensor and converted to the motor torque. The method of analysing proposed in this study will be used for determining the gains (tuning) of parameter in NC controller, when the controller is set up at a machine initially or the controller condition is changed during the work.

Effect of sensor positioning error on the accuracy of magnetic field mapping result for NMR/MRI

  • Huang, Li;Lee, Sangjin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.28-32
    • /
    • 2015
  • Nowadays the magnetic field mapping is widely used in the design and analysis of the NMR/MRI magnet system, and the accuracy of mapping result has become more and more important. There are several factors affecting the accuracy of the mapping such as the mapping method, the precision of the sensor, the position of the measurement points, the calculation accuracy, and so on. In this paper the error due to the misalignment of the measurement points was discussed. The magnetic field in the central volume was mapped using an indirect method in an MRI magnet system and the magnetic field was fitted to a polynomial. Considering the misalignment between the original measurement points and the practical measurement points, there must be some errors in the mapping calculation and we called it positioning error. Several comparisons of the positioning error have been presented through the theoretical estimates and the exact magnetic field values. Finally, the allowable positioning errors were suggested to guarantee the accuracy of the magnetic field mapping within a certain degree for an example case.

Lost Motion Analysis for Nonlinearity Identification of a 6-DOF Ultra-Precision Positioning Stage (6-자유도 초정밀 위치 결정 스테이지의 비선형성 식별을 위한 로스트 모션 해석)

  • Shin, Hyun-Pyo;Moon, Jun-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.3
    • /
    • pp.263-268
    • /
    • 2015
  • This paper describes lost motion analysis for a novel 6-DOF ultra-precision positioning stage. In the case of flexure hinge based precision positioning stage, lost motion is generated when the displacement of actuator is not delivered completely to the end-effector because of the elasticity of flexure hinge. Consequently, it is need to compute amount of lost motion to compensate the motion or to decide appropriate control method for precision positioning. Lost motion analysis for the vertical actuation unit is presented. The analysis results are presented in two ways: analytic and numerical analyses. It is found that they closely coincide with each other by 1% error. In finite element analysis result, the amount of lost motion is turned out to be about 3%. Although, the amount is not so large, it is necessary procedure to check the lost motion to establish the control method.

A Study on the Satellite Orbital Positioning Method for Efficient Orbit Utilization (궤도자원의 효율적인 활용을 위한 위성궤도 선정 기법에 관한 연구)

  • 권태곤;박세경김재명
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.147-150
    • /
    • 1998
  • To determine the satellite orbital positions under consideration of interference caused by inter-satellite systems is one of the most important issues in terms of optimal usage of satellite network resources. In this paper, we present the orbital positioning method for a new satellite to minimize inter-satellite system interference effect in the fixed satellite communication using a new method. Through the computer simulation, it is clear that the proposed method is suitable to determine the satellite orbital positions.

  • PDF

Implementation of a Library Function of Scanning RSSI and Indoor Positioning Modules (RSSI 판독 라이브러리 함수 및 옥내 측위 모듈 구현)

  • Yim, Jae-Geol;Jeong, Seung-Hwan;Shim, Kyu-Bark
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.11
    • /
    • pp.1483-1495
    • /
    • 2007
  • Thanks to IEEE 802.11 technique, accessing Internet through a wireless LAN(Local Area Network) is possible in the most of the places including university campuses, shopping malls, offices, hospitals, stations, and so on. Most of the APs(access points) for wireless LAN are supporting 2.4 GHz band 802.11b and 802.11g protocols. This paper is introducing a C# library function which can be used to read RSSIs(Received Signal Strength Indicator) from APs. An LBS(Location Based Service) estimates the current location of the user and provides useful user's location-based services such as navigation, points of interest, and so on. Therefore, indoor, LBS is very desirable. However, an indoor LBS cannot be realized unless indoor position ing is possible. For indoor positioning, techniques of using infrared, ultrasound, signal strength of UDP packet have been proposed. One of the disadvantages of these techniques is that they require special equipments dedicated for positioning. On the other hand, wireless LAN-based indoor positioning does not require any special equipments and more economical. A wireless LAN-based positioning cannot be realized without reading RSSIs from APs. Therefore, our C# library function will be widely used in the field of indoor positioning. In addition to providing a C# library function of reading RSSI, this paper introduces implementation of indoor positioning modules making use of the library function. The methods used in the implementation are K-NN(K Nearest Neighbors), Bayesian and trilateration. K-NN and Bayesian are kind of fingerprinting method. A fingerprint method consists of off-line phase and realtime phase. The process time of realtime phase must be fast. This paper proposes a decision tree method in order to improve the process time of realtime phase. Experimental results of comparing performances of these methods are also discussed.

  • PDF

Development of a Virtual Reference Station-based Correction Generation Technique Using Enhanced Inverse Distance Weighting

  • Tae, Hyunu;Kim, Hye-In;Park, Kwan-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.2
    • /
    • pp.79-85
    • /
    • 2015
  • Existing Differential GPS (DGPS) pseudorange correction (PRC) generation techniques based on a virtual reference station cannot effectively assign a weighting factor if the baseline distance between a user and a reference station is not long enough. In this study, a virtual reference station DGPS PRC generation technique was developed based on an enhanced inverse distance weighting method using an exponential function that can maximize a small baseline distance difference due to the dense arrangement of DGPS reference stations in South Korea, and its positioning performance was validated. For the performance verification, the performance of the model developed in this study (EIDW) was compared with those of typical inverse distance weighting (IDW), first- and second-order multiple linear regression analyses (Planar 1 and 2), the model of Abousalem (1996) (Ab_EXP), and the model of Kim (2013) (Kim_EXP). The model developed in the present study had a horizontal accuracy of 53 cm, and the positioning based on the second-order multiple linear regression analysis that showed the highest positioning accuracy among the existing models had a horizontal accuracy of 51 cm, indicating that they have similar levels of performance. Also, when positioning was performed using five reference stations, the horizontal accuracy of the developed model improved by 8 ~ 42% compared to those of the existing models. In particular, the bias was improved by up to 27 cm.

A Modified Residual-based Extended Kalman Filter to Improve the Performance of WiFi RSSI-based Indoor Positioning (와이파이 수신신호세기를 사용하는 실내위치추정의 성능 향상을 위한 수정된 잔차 기반 확장 칼만 필터)

  • Cho, Seong Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.684-690
    • /
    • 2015
  • This paper presents a modified residual-based EKF (Extended Kalman Filter) for performance improvement of indoor positioning using WiFi RSSI (Received Signal Strength Indicator) measurement. Radio signal strength in indoor environments may have irregular attenuation characteristics due to obstacles such as walls, furniture, etc. Therefore, the performance of the RSSI-based positioning with the conventional trilateration method or Kalman filter is insufficient to provide location-based accurate information services. In order to enhance the performance of indoor positioning, in this paper, error analysis of the distance calculated by using the WiFi RSSI measurement is performed based on the radio propagation model. Then, an IARM (Irregularly Attenuated RSSI Measurement) error is defined. Also, it shows that the IARM error is included in the residual of the positioning filter. The IARM error is always positive. So, it is presented that the IARM error can be estimated by taking the absolute value of the residual. Consequently, accurate positioning can be achieved based on the IEM (IARM Error Mitigated) EKF with the residual modified by using the estimated IARM error. The performance of the presented IEM EKF is verified experimentally.

Two Kinds of Hybrid Localization System Design Techniques Based on LED IT (LED IT 기반의 두 가지 하이브리드 측위 시스템 설계 기법)

  • Lee, Yong Up;Kang, Yeongsik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.2
    • /
    • pp.155-164
    • /
    • 2013
  • Two design techniques for more accurate and more convenient hybrid positioning system with visible light communication (VLC) and ad-hoc wireless network infrastructure are proposed, in order to overcome the problems of high estimation error, high cost, and limited service range of the conventional positioning techniques. First method is based on a non-carrier VLC based hybrid positioning technique for applications involving of low data rate optical sensing and narrow-range visible light reception from transmitter, and long-range positioning. The second method uses a 4 MHz carrier VLC-based hybrid positioning technique for a high data rate optical sensing and wide-range visible light receiving from transmitter, and mid-range positioning applications. In indoor environments with obstacles where there are long-range 7731.4cm and mid-range 2368cm distances between an observer and a target respectively, the hybrid positioning developed with two design techniques are tested, and the proposed system is verified and analyzed in this paper.

Pedestrian Positioning Method using Multi-Level Transmission Signal Strength (다단계 전송 신호 강도 기술을 이용한 보행자 위치 측정 방법)

  • Lee, Myung-Su;Kim, Ju-Won;Lee, Sang-Sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.124-131
    • /
    • 2015
  • In this paper, we proposed indoor positioning system using RSS(Received Signal Strength) positioning method and TSS(Transmission Signal Strength). The main point in the paper is to improve reliability of accuracy positioning with the area recognition algorithm and probabilistic algorithm, which can be effectively used indoor. In the test in 1-dimensional or 2-dimensional spaces, also we checked effective positioning system considered environment of propagation that is changed by reflection, refraction and multipath in according to space form. It is necessary to find place where urgent situation happen and quickly to respond the situation for patients or the weak. Therefore, we expect the positioning system proposed can apply to the field of traffic IT.

An Indoor Localization Algorithm of UWB and INS Fusion based on Hypothesis Testing

  • Long Cheng;Yuanyuan Shi;Chen Cui;Yuqing Zhou
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1317-1340
    • /
    • 2024
  • With the rapid development of information technology, people's demands on precise indoor positioning are increasing. Wireless sensor network, as the most commonly used indoor positioning sensor, performs a vital part for precise indoor positioning. However, in indoor positioning, obstacles and other uncontrollable factors make the localization precision not very accurate. Ultra-wide band (UWB) can achieve high precision centimeter-level positioning capability. Inertial navigation system (INS), which is a totally independent system of guidance, has high positioning accuracy. The combination of UWB and INS can not only decrease the impact of non-line-of-sight (NLOS) on localization, but also solve the accumulated error problem of inertial navigation system. In the paper, a fused UWB and INS positioning method is presented. The UWB data is firstly clustered using the Fuzzy C-means (FCM). And the Z hypothesis testing is proposed to determine whether there is a NLOS distance on a link where a beacon node is located. If there is, then the beacon node is removed, and conversely used to localize the mobile node using Least Squares localization. When the number of remaining beacon nodes is less than three, a robust extended Kalman filter with M-estimation would be utilized for localizing mobile nodes. The UWB is merged with the INS data by using the extended Kalman filter to acquire the final location estimate. Simulation and experimental results indicate that the proposed method has superior localization precision in comparison with the current algorithms.