• Title/Summary/Keyword: Position sensorless control

Search Result 339, Processing Time 0.026 seconds

Speed Sensorless Vector Control of Wound Induction Motor Using a MRAS Method (MRAS 기법을 이용한 권선형 유도전동기의 속도센서리스 벡터제어)

  • Choi, Hyun-Sik;Lee, Jae-Hak;Um, Tae-Wook
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.42 no.1
    • /
    • pp.29-34
    • /
    • 2005
  • The wound induction motor can provide high starting torque and reduced starting current simultaneously by inserting large resistor externally when starting. And this technique is one of the well known methods among the induction motor starting methods and generally used for heavy load starting such as crane and cement factories. The conventional PI controller has been widely used in industrial application due to the simple control algorithm and is generally used for control of current torque, position, and speed for the wound induction motor drive system. However, the conventional control system for wound induction motor may result in poor performance because sensors have to be used but are often limited by the environmental condition. Recently, to overcome these problems, many sensorless vector control methods for the wound induction motor have been studied. This paper presents a MRAS method for sensorless vector control of the wound induction motor drive. In the conventional MRAS method, in low frequency, the stator resistance variation may result in poor performance. Therefore, this paper presents a MRAS method with stator and rotor resistance tuning for sensorless vector control of the wound induction motor to overcome several shortages of the conventional MRAS caused by parameter variation and to enhance the robustness of the sensorless vector control. The validity and effectiveness of the proposed method is verified through digital simulation.

Performance Test of Sensorless Speed Control Logic for Gas Turbine Starter (가스터빈 기동장치 센서리스 속도제어로직 성능실험)

  • Ryu, Hoseon;Moon, jooyoung;Lee, Uitaek;Lee, Joohyun;Kang, Yunmo;Park, Manki
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.2
    • /
    • pp.69-75
    • /
    • 2017
  • The gas turbine static starter rotates the stationary synchronous machine by the interaction of the rotor and the stator. The detection from the initial position of the rotor has been an important issue to drive with optimum torque. Previously, the gas turbine starter was used by attaching the encoder to the synchronous machine, but the position and velocity of the rotor have been estimated by sensor-less method until recently due to the difficulty in attaching and detaching and damage caused by the shaft voltage noise. In this paper, Rotor initial(stationary state) position estimation, forced commutation control(speed less than 10%), and natural commutation control(speed more than 10%) method using magnetic flux with integrated terminal voltage were presented and the sensor-less speed control performance was verified. As a result of making and evaluating the 29 kVA synchronous machine and the starting device, the performance of each control mode was satisfactory. Furthermore, the applied technology is expected to be used for the development of the gas turbine starter of tens of MW class and the field application.

PMSM Sensorless Control using Parallel Reduced-Order Extended Kalman Filter (병렬형 칼만 필터를 사용한 영구 자석 동기 전동기의 센서리스 제어)

  • Jang, Jin-Su;Park, Byoung-Gun;Kim, Tae-Sung;Lee, Dong-Myung;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.336-343
    • /
    • 2008
  • This paper proposes a novel sensorless control scheme for a Permanent Magnet Synchronous Motor (PMSM) by using a parallel reduced-order Extended Kalman Filter. The proposed scheme can obtain rotor position and speed by back-EKF that is estimated by reduced-order ETD and save computation time great)y due to using a parallel structure that works by turns every sampling time. Therefore, proposed scheme has merits of conventional EKF, and problems of parameter sensitivity are partially overcome. And proposed scheme can safely estimate rotor speed and position by using new algorithms according to driving regions. Experimental results show the validity of the proposed estimation technique, and to verify the merit of the proposed scheme, a comparison of a new reduced-order EKF algorithm with a conventional EKF algorithm has been also made in terms of computation time.

Sensorless Control Strategy of IPMSM Based on a Parallel Reduced-Order Extended Kalman Filter (병렬형 저감 차수 칼만 필터를 이용한 매입형 영구자석 동기전동기의 센서리스 제어)

  • Yim, Dong-Hoon;Park, Byoung-Gun;Kim, Rae-Young;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.266-273
    • /
    • 2011
  • This paper proposes a novel sensorless control scheme for a Permanent Magnet Synchronous Motor (PMSM) by using a parallel reduced-order Extended Kalman Filter. The proposed scheme can obtain rotor position and speed by back-EMF that is estimated by reduced-order EKF and save computation time greatly due to using a parallel structure that works by turns every sampling time. Therefore, proposed scheme has merits of conventional EKF, and problems of parameter sensitivity are partially overcome. And proposed scheme can safely estimate rotor speed and position by using new algorithms according to driving regions. Experimental results show the validity of the proposed estimation technique, and to verify the merit of the proposed scheme, a comparison of a new reduced-order EKF algorithm with a conventional EKF algorithm has been also made in terms of computation time.

Sensorless Control of PMSM using Rotor Position Tracking PI Controller (회전자 위치 추정 PI 제어기를 이용한 PMSM 센서리스 제어)

  • Lee, Jong-Kun;Seok, Jul-Ki;Lee, Dong-Choon
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.176-178
    • /
    • 2003
  • This paper presents a new velocity estimation strategy of a non-salient permanent magnet synchronous motor(PMSM) drive without high frequency signal injection or special PWM pattern. This approach is based on the d-axis current regulator output voltage of the drive system which has the information of rotor position error. The rotor velocity can be estimated through a rotor position tracking PI controller that controls the position error to aero. For zero and low speed operation, the PI gains of rotor position tracking controller have a variable structure. The PI tuning formulas are derived by analyzing this control system using the frequency domain specifications such as phase margin and bandwidth assignment.

  • PDF

A Study on the Optimal Control of SRM without Speed Sensor (속도센서없는 SRM의 최적제어에 관한 연구)

  • 송병섭
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.705-708
    • /
    • 2000
  • Switched Reluctance motors(SRM) attract much attention in motor because they are reliable and inexpensive. With advance in power electronics and high-speed processors the performance of SRM has been enhanced greatly. But they require rotor position information to operate, In many systems rotor position sensors are undesirable and have disadvantages. To overcome the disadvantages include by position sensors a number of sensorless methods for SRM's have been proposed by researchers. This paper describes a method for indirect sensing of rotor position in SRM's pulsewidth modulation voltage control. The method required no priori knowledge of motor parameters excepts for the number of stator and rotor poles. The detection method uses the change of the derivative of the phase current to detect the position.

  • PDF

The Position and Speed Estimation of Switched Reluctance Motor using Sliding Mode Observer

  • Yang, Lee-Woo;Kim, Bo-Youl;Kim, Jin-Soo;Kim, Young-Seok
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.774-779
    • /
    • 1998
  • For the speed control of motors, the position or speed sensors are necessary to obtain the position information of the rotor. Specially, SRM(Switched Reluctance Motor) needs an accurate rotor position data because both the rotor and the stator have a salient pole structure. High functional sensors like resolver or encoder are expensive and have complex connecting lines to the controller so the pure signals are apt to be mixed with noised. In the sight of SRM drives, the high temperature, heavy dust, and the EMI surroundings reduce the reliability of speed and position sensors. Therefore, the speed and position sensorless control algorithms using observer have been accepted widely. In this paper An adaptive sliding observer is described to control the SRM without speed or position sensors. The adaptive sliding observer is set on the basis of variable structure control theory. The sliding surface is constructed by current error terms and this surface guarantees the errors converge to "zero". The stability of observer is affirmed by Lyapunov stability analysis and popov's hyper stability theory.ty theory.

  • PDF

Improvement of Rotor Position Estimation of SRM using PLL technique (SRM의 회전자 위치추정 개선을 위한 PLL기법의 적용)

  • Baik, Won-Sik;Choi, Kyeong-Ho;Hwang, Don-Ha;Kim, Dong-Hee;Kim, Min-Huei
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.200-202
    • /
    • 2005
  • In this paper, improved rotor position estimation for position sensorless control system of the SRM (Switched Reluctance Motor) is presented. For more accurate rotor position estimation, the PLL (Phase Locked Loop) based position interpolation is adapted. In the current-flux-rotor position lookup table based rotor position estimation, the inherent current and flux-linkage ripple can cause the position estimation error. Instead of the conventional low-pass filter, the PLL based position interpolation technique is used for the better dynamic performance. The developed rotor position estimation scheme is realized using TMS320F2812 digital signal processor and prototype 1-hp SRM.

  • PDF

Sensorless Control of the Synchronous Reluctance Machine

  • Kilthau, A.;Pacas, J.M.
    • Journal of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.95-103
    • /
    • 2002
  • The paper deals with the control of the synchronous reluctance machine without position senser. A method for the computation of the transformation angle out of terminal voltages and currents is presented. The injection of test signals allows operation at zero speed. Fundamental for this control scheme is the angle estimation method over the whole operating range including field-weakening is discussed in detail. The implementation of the angle estimation method in a rotor-oriented control scheme and practical results are demonstrated.

Sensorless Control of the Synchronous Reluctance Machine

  • Kilthau A.;Pacas J. M.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.768-772
    • /
    • 2001
  • The paper deals with the control of the synchronous reluctance machine without position sensor. A method for the computation of the transformation angle out of terminal voltages and currents is presented. The injection of test signals allows operation at zero speed. Fundamental for this control scheme is the exact modelling of the machine, where especially the saturable inductances are of central interest. The accuracy of the angle estimation method over the whole operating range including field-weakening is discussed in detail. The implementation of the angle estimation method in a rotor-oriented control scheme and practical results are demonstrated.

  • PDF