• 제목/요약/키워드: Position sensor

검색결과 2,297건 처리시간 0.025초

Sensorless Control Method in IPMSM Position Sensor Fault for HEV

  • Kim, Sung-Joo;Lee, Yong-Kyun;Lee, Ju-Suk;Lee, Kwang-Woon;Kwon, Taesuk;Mok, Hyungsoo
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권5호
    • /
    • pp.1056-1061
    • /
    • 2013
  • The widely used motors in HEV(Hybrid Electric Vehicles) are IPMSM(Interior Permanent Magnet Synchronous Motor) which has no rotor heat, higher efficiency and advantageous in volume and weight comparing with other motors. For vector control of IPMSM, position information of rotor is required but Resolver is mainly used as the detecting sensor. However, the use of position sensors will reduce the system reliability of hybrid electric vehicles. In this paper, a way to control the motor by sensorless was proposed at the event of sensor failure. We also implemented IPMSM sensorless operation by the expanded EMF(Electro Motive Force) voltage way and harmonic voltage which is applying in the low speed area. And we proposed how to change with sensorless control by detecting the position sensors failure and verified it through experiments.

A Sensing System of the Halbach Array Permanent Magnet Spherical Motor Based on 3-D Hall Sensor

  • Li, Hongfeng;Liu, Wenjun;Li, Bin
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.352-361
    • /
    • 2018
  • This paper proposes a sensing system of the Halbach array permanent magnet spherical motor(PMSM). The rotor position can be obtained by solving three rotation angles, which revolves around 3 reference axes of the stator. With the development of 3-D hall sensor, the position identification problem of the Halbach array PMSM based on rotor magnetic field is studied in this paper. A nonlinear and serious coupling relationship between the rotation angles and the measured magnetic flux density is established on the basis of the rotation transformation theory and the magnetic field model. In order to get rid of the influence on position detection caused by the harmonics of rotor magnetic field and the stator coil magnetic field, a sensor location combination scheme is proposed. In order to solve the nonlinear equation fast and accurately, a new position solution algorithm which combines the merits of gradient projection and particle swarm optimization(PSO) is presented. Then the rotation angles are obtained and the rotor position is identified. The validity of the sensing system is verified through the simulation.

Optimal placement of piezoelectric actuator/senor patches pair in sandwich plate by improved genetic algorithm

  • Amini, Amir;Mohammadimehr, Mehdi;Faraji, Alireza
    • Smart Structures and Systems
    • /
    • 제26권6호
    • /
    • pp.721-733
    • /
    • 2020
  • The present study investigates the employing of piezoelectric patches in active control of a sandwich plate. Indeed, the active control and optimal patch distribution on this structure are presented together. A sandwich plate with honeycomb core and composite reinforced by carbon nanotubes in facesheet layers is considered so that the optimum position of actuator/sensor patches pair is guaranteed to suppress the vibration of sandwich structures. The sandwich panel consists of a search space which is a square of 200 × 200 mm with a numerous number of candidates for the optimum position. Also, different dimension of square and rectangular plates to obtain the optimal placement of piezoelectric actuator/senor patches pair is considered. Based on genetic algorithm and LQR, the optimum position of patches and fitness function is determined, respectively. The present study reveals that the efficiency and performance of LQR control is affected by the optimal placement of the actuator/sensor patches pair to a large extent. It is also shown that an intelligent selection of the parent, repeated genes filtering, and 80% crossover and 20% mutation would increase the convergence of the algorithm. It is noted that a fitness function is achieved by collection actuator/sensor patches pair cost functions in the same position (controllability). It is worth mentioning that the study of the optimal location of actuator/sensor patches pair is carried out for different boundary conditions of a sandwich plate such as simply supported and clamped boundary conditions.

2차원 평면상에서 이동하는 물체의 위치측정 (A Position Measurements of Moving Object in 2D Plane)

  • 노재희;이용중;최재하;노형식;이양범
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권12호
    • /
    • pp.1537-1543
    • /
    • 1999
  • In this paper, PSD(Position Sensitive Detector) sensor system that estimates position for moving objects in 2D plane is developed. PSD sensor is used to measure the position of an incidence light in real-time. To get the position of light source of moving target, a new parameter calibration algorithm and neural network technique are proposed and applied. Real-time position measurements of the mobile robot with light source is examined to validate the proposed method. It is shown that the proposed technique provides accurate position estimation of the moving object.

  • PDF

이동 로봇의 위치측정을 위한 PSD 센서 시스템에 관한 연구 (A study on the PSD sensor system for localization of mobile robots)

  • 노영식
    • 제어로봇시스템학회논문지
    • /
    • 제2권4호
    • /
    • pp.330-336
    • /
    • 1996
  • An real-time active beacon localization system for mobile robots is developed and implemented. This system permits the estimation of robot positions when detecting light sources by PSD(Position Sensitive Detector) sensor which are placed sparsely over the robots work space as beacons(or landmarks). An LSE(Least Square Estimation) method is introduced to calibrate the internal parameters of a model for the beacon and robot position. The proposed system has two operational modes of position estimation. One is the initial position calculation by the detection of two or more light sources positions of which are known. The other is the continuous position compensation that calculates the position and heading of the robot using the IEKF(Iterated Extended Kalman Filter) applied to the beacon and dead-reckoning data. Practical experiments show that the estimated position obtained by this system is precise enough to be useful for the navigation of robots.

  • PDF

간접식 센서에 의한 토로이달 스위치드 릴럭턴스 모터의 회전자 위치검출 및 구동 (Toroidal Switched Reluctance Motor Drive Systems Using Indirect Rotor Position Sensor)

  • 양형열;신덕식;임영철
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2004년도 전력전자학술대회 논문집(1)
    • /
    • pp.201-205
    • /
    • 2004
  • A method for driving and position sensing of TSRM(Toroidal Switched Reluctance Motor) using the search coil is presented in this paper. Position information of the rotor is essential for SRM drives. The rotor position sensor such as an opto-interrupter or high performance encoder is generally used for the estimation of rotor position. However, these discrete position sensors not only add complexity and cost to the system but also tend to reduce the reliability of the drive system. In order to solve these problems, in the proposed method, rotor position detection is achieved using the voltage waveforms induced by the time varying flux linkage in the search coils, and then the appropriate phases are excited to drive the SRM. But the search coil EMF is generated only when the motor rotates. Therefore the rotor position sensing method at standstill is also suggested.

  • PDF

무인 설비 감시용 레일 가이드 구동장치에서 BLDC 전동기의 위치 제어 (A Position Control of BLDC Motor in a Rail Guided System for the Un-maned Facility Security)

  • 배종남;이동희
    • 전력전자학회논문지
    • /
    • 제22권3호
    • /
    • pp.223-230
    • /
    • 2017
  • A low-cost BLDC motor with hall sensor is used to drive the position control of a facility security monitoring system in this paper. Low measurable frequency of the hall sensor signal in low-speed regions results in difficulty in obtaining accurate speed detection and position control. To improve system control performance, we propose a variable gain of position controller and stop mode control scheme according to the motor speed and error position with pre-set deceleration time. The proposed stop mode control scheme is activated around the stop position to forcibly move the BLDC motor to the stop position in low speed. In the proposed stop mode, the motor current is controlled by the actual speed with the reference rotating angle. The control performance of the proposed position control is verified through experiments at the actual rail guided facility security monitoring system.

광 마우스 센서를 이용한 이동로봇 좌표추정 (Coordinate Estimation of Mobile Robot Using Optical Mouse Sensors)

  • 박상형;이수영
    • 제어로봇시스템학회논문지
    • /
    • 제22권9호
    • /
    • pp.716-722
    • /
    • 2016
  • Coordinate estimation is an essential function for autonomous navigation of a mobile robot. The optical mouse sensor is convenient and cost-effective for the coordinate estimation problem. It is possible to overcome the position estimation error caused by the slip and the model mismatch of robot's motion equation using the optical mouse sensor. One of the simple methods for the position estimation using the optical mouse sensor is integration of the velocity data from the sensor with time. However, the unavoidable noise in the sensor data may deteriorate the position estimation in case of the simple integration method. In general, a mobile robot has ready-to-use motion information from the encoder sensors of driving motors. By combining the velocity data from the optical mouse sensor and the motion information of a mobile robot, it is possible to improve the coordinate estimation performance. In this paper, a coordinate estimation algorithm for an autonomous mobile robot is presented based on the well-known Kalman filter that is useful to combine the different types of sensors. Computer simulation results show the performance of the proposed localization algorithm for several types of trajectories in comparison with the simple integration method.

다중주기 칼만 필터를 이용한 비동기 센서 융합 (Asynchronous Sensor Fusion using Multi-rate Kalman Filter)

  • 손영섭;김원희;이승희;정정주
    • 전기학회논문지
    • /
    • 제63권11호
    • /
    • pp.1551-1558
    • /
    • 2014
  • We propose a multi-rate sensor fusion of vision and radar using Kalman filter to solve problems of asynchronized and multi-rate sampling periods in object vehicle tracking. A model based prediction of object vehicles is performed with a decentralized multi-rate Kalman filter for each sensor (vision and radar sensors.) To obtain the improvement in the performance of position prediction, different weighting is applied to each sensor's predicted object position from the multi-rate Kalman filter. The proposed method can provide estimated position of the object vehicles at every sampling time of ECU. The Mahalanobis distance is used to make correspondence among the measured and predicted objects. Through the experimental results, we validate that the post-processed fusion data give us improved tracking performance. The proposed method obtained two times improvement in the object tracking performance compared to single sensor method (camera or radar sensor) in the view point of roots mean square error.

홀센서를 이용한 자석의 위치인식 센서 개발 (Magnet Position Sensor System using Hall Sensors)

  • 김은주;김의선;임영철
    • 한국엔터테인먼트산업학회논문지
    • /
    • 제5권2호
    • /
    • pp.166-172
    • /
    • 2011
  • 저가의 홀센서를 이용하여 자석의 위치를 인식하는 센서 시스템을 제안하였다. 먼저 모델식을 이용하여 자석에 의한 자기장을 측정하고, 수평 자계와 수직 자계의 특성을 분석하여, 센서의 배치방법을 결정하였다. 자석과 홀센서의 위치 관계에 따라서 측정된 자기장 값으로부터 자석의 위치를 추정하는 알고리즘을 제안하고, 이론적인 오차를 계산하였다. 또한 마이크로 컨트롤러를 사용하여 개발할 때의 단점인 실시간 데이터 확인이 어려운 점을 극복하기 위해서 컴퓨터용 응용 프로그램을 작성하여, 작업의 수월성을 높였다. 계산된 이론적 오차는 0.0025cm 이하로 나타났으며 실제로 개발된 시스템의 오차는 0.07cm 이하로 측정되어 여러 가지 상황에서 제안한 방법들의 우수성을 입증하였다.