• Title/Summary/Keyword: Position estimation performance

Search Result 531, Processing Time 0.031 seconds

Error analysis of acoustic target detection and localization using Cramer Rao lower bound (크래머 라오 하한을 이용한 음향 표적 탐지 및 위치추정 오차 분석)

  • Park, Ji Sung;Cho, Sungho;Kang, Donhyug
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.3
    • /
    • pp.218-227
    • /
    • 2017
  • In this paper, an algorithm to calculate both bearing and distance error for target detection and localization is proposed using the Cramer Rao lower bound to estimate the minium variance of their error in DOA (Direction Of Arrival) estimation. The performance of arrays in detection and localization depends on the accuracy of DOA, which is affected by a variation of SNR (Signal to Noise Ratio). The SNR is determined by sonar parameters such as a SL (Source Level), TL (Transmission Loss), NL (Noise Level), array shape and beam steering angle. For verification of the suggested method, a Monte Carlo simulation was performed to probabilistically calculate the bearing and distance error according to the SNR which varies with the relative position of the target in space and noise level.

Approximate 3D Localization Mechanism in Wireless Sensor Network (무선 센서 네트워크 환경에서 3차원 근사 위치추적 기법)

  • Shim, Jaeseok;Lim, Yujin;Park, Jaesung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.9
    • /
    • pp.614-619
    • /
    • 2014
  • In WSN (Wireless Sensor Networks) based surveillance system, it needs to know the occurrence of events or objects and their locations, because the data have no meaning without location information. Using traditional 2D localization mechanisms provide good accuracy where altitude is fixed. But the mapping the position estimated by 2D localization to the real world can cause an error. Even though 3D localization mechanisms provide better accuracy than 2D localization, they need four reference nodes at least and high processing overhead. In our surveillance system, it is needed to estimate the height of the detected object in order to determine if the object is human. In this paper, we propose a height estimation mechanism which does not require many reference nodes and high complexity. Finally, we verify the performance of our proposed mechanism through various experiments.

Estimation of the load-deformation responses of flanged reinforced concrete shear walls

  • Wang, Bin;Shi, Qing-Xuan;Cai, Wen-Zhe;Peng, YI-Gong
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.529-542
    • /
    • 2020
  • As limited well-documented experimental data are available for assessing the attributes of different deformation components of flanged walls, few appropriate models have been established for predicting the inelastic responses of flanged walls, especially those of asymmetrical flanged walls. This study presents the experimental results for three large-scale T-shaped reinforced concrete walls and examines the variations in the flexural, shear, and sliding components of deformation with the total deformation over the entire loading process. Based on the observed deformation behavior, a simple model based on moment-curvature analysis is established to estimate flexural deformations, in which the changes in plastic hinge length are considered and the deformations due to strain penetration are modeled individually. Based on the similar gross shapes of the curvature and shear strain distributions over the wall height, a proportional relationship is established between shear displacement and flexural rotation. By integrating the deformations due to flexure, shear, and strain penetration, a new load-deformation analytical model is proposed for flexure-dominant flanged walls. The proposed model provides engineers with a simple, accurate modeling tool appropriate for routine design work that can be applied to flexural walls with arbitrary sections and is capable of determining displacements at any position over the wall height. By further simplifying the analytical model, a simple procedure for estimating the ultimate displacement capacity of flanged walls is proposed, which will be valuable for performance-based seismic designs and seismic capacity evaluations.

Analysis of Spatial Correlation and Linear Modeling of GNSS Error Components in South Korea (국내 GNSS 오차 성분별 공간 상관성 및 선형 모델링 특성 분석)

  • Sungik Kim;Yebin Lee;Yongrae Jo;Yunho Cha;Byungwoon Park;Sul Gee Park;Sang Hyun Park
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.3
    • /
    • pp.221-235
    • /
    • 2024
  • Errors included in Global Navigation Satellite System (GNSS) measurements degrade the performance of user position estimation but can be mitigated by spatial correlation properties. Augmentation systems providing correction data can be broadly categorized into State Space Representation (SSR) and Observation Space Representation (OSR) methods. The satellite-based cm-level augmentation service based on the SSR broadcasts correction data via satellite signals, unlike the traditional Real-Time Kinematic (RTK) and Network RTK methods, which use OSR. To provide a large amount of correction data via the limited bandwidth of the satellite communication, efficient message structure design considering service area, correction generation, and broadcast intervals is necessary. For systematic message design, it is necessary to analyze the influence of error components included in GNSS measurements. In this study, errors in satellite orbits, satellite clocks for GPS, Galileo, BeiDou, and QZSS satellite constellations ionospheric and tropospheric delays over one year were analyzed, and their spatial decorrelations and linear modeling characteristics were examined.

Analysis of BWIM Signal Variation Due to Different Vehicle Travelling Conditions Using Field Measurement and Numerical Analysis (수치해석 및 현장계측을 통한 차량주행조건에 따른 BWIM 신호 변화 분석)

  • Lee, Jung-Whee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.1
    • /
    • pp.79-85
    • /
    • 2011
  • Bridge Weigh-in-Motion(BWIM) system calculates a travelling vehicle's weight without interruption of traffic flow by analyzing the signals that are acquired from various sensors installed in the bridge. BWIM system or data accumulated from the BWIM system can be utilized to development of updated live load model for highway bridge design, fatigue load model for estimation of remaining life of bridges, etc. Field test with moving trucks including various load cases should be performed to guarantee successful development of precise BWIM system. In this paper, a numerical simulation technique is adopted as an alternative or supplement to the vehicle traveling test that is indispensible but expensive in time and budget. The constructed numerical model is validated by comparison experimentally measured signal with numerically generated signal. Also vehicles with various dynamic characteristics and travelling conditions are considered in numerical simulation to investigate the variation of bridge responses. Considered parameters in the numerical study are vehicle velocity, natural frequency of the vehicle, height of entry bump, and lateral position of the vehicle. By analyzing the results, it is revealed that the lateral position and natural frequency of the vehicle should be considered to increase precision of developing BWIM system. Since generation of vehicle travelling signal by the numerical simulation technique costs much less than field test, a large number of test parameters can effectively be considered to validate the developed BWIM algorithm. Also, when artificial neural network technique is applied, voluminous data set required for training and testing of the neural network can be prepared by numerical generation. Consequently, proposed numerical simulation technique may contribute to improve precision and performance of BWIM systems.

Body Segment Length and Joint Motion Range Restriction for Joint Errors Correction in FBX Type Motion Capture Animation based on Kinect Camera (키넥트 카메라 기반 FBX 형식 모션 캡쳐 애니메이션에서의 관절 오류 보정을 위한 인체 부위 길이와 관절 가동 범위 제한)

  • Jeong, Ju-heon;Kim, Sang-Joon;Yoon, Myeong-suk;Park, Goo-man
    • Journal of Broadcast Engineering
    • /
    • v.25 no.3
    • /
    • pp.405-417
    • /
    • 2020
  • Due to the popularization of the Extended Reality, research is actively underway to implement human motion in real-time 3D animation. In particular, Microsoft developed Kinect cameras for 3D motion information can be obtained without the burden of facilities and with simple operation, real-time animation can be generated by combining with 3D formats such as FBX. Compared to the marker-based motion capture system, however, Kinect has low accuracy due to its lack of estimated performance of joint information. In this paper, two algorithms are proposed to correct joint estimation errors in order to realize natural human motion in motion capture animation system in Kinect camera-based FBX format. First, obtain the position information of a person with a Kinect and create a depth map to correct the wrong joint position value using the human body segment length constraint information, and estimate the new rotation value. Second, the pre-set joint motion range constraint is applied to the existing and estimated rotation value and implemented in FBX to eliminate abnormal behavior. From the experiment, we found improvements in human behavior and compared errors between algorithms to demonstrate the superiority of the system.

Loran-C Multiple Chain Positioning using ToA Measurements (ToA 측정치를 이용하는 Loran-C 다중 체인 측위 방법)

  • Kim, Youngki;Fang, Tae Hyun;Kim, Don;Seo, Kiyeol;Park, Sang Hyun
    • Journal of Navigation and Port Research
    • /
    • v.43 no.1
    • /
    • pp.23-32
    • /
    • 2019
  • In this paper, we proposed a multi-chain Time of Arrival (ToA) positioning method to estimate positions using all received Loran-C signals from multiple chains without constraining to a single chain. Conventionally, we have to choose only one chain among several available chains for position estimation using Loran-C. Therefore, the number of signals to be used for positioning is limited to three to five. In general, if more signals are used for positioning estimation, its performance tends to be improved in terms of accuracy and availability. To validate the proposed method for multi-chain Loran-C, we firstly carried out a static positioning test in land. By analyzing the test results, we confirmed that the proposed method works well under a multi-chain Loran-C scenario. Subsequently, another mobile positioning test was conducted on board a vessel under a practical application scenario. From this second test, we successfully demonstrated that the multi-chain ToA positioning method even in situations where the conventional single-chain Loran-C approach fails for positioning.

Improving Precision of the Exterior Orientation and the Pixel Position of a Multispectral Camera onboard a Drone through the Simultaneous Utilization of a High Resolution Camera (고해상도 카메라와의 동시 운영을 통한 드론 다분광카메라의 외부표정 및 영상 위치 정밀도 개선 연구)

  • Baek, Seungil;Byun, Minsu;Kim, Wonkook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.541-548
    • /
    • 2021
  • Recently, multispectral cameras are being actively utilized in various application fields such as agriculture, forest management, coastal environment monitoring, and so on, particularly onboard UAV's. Resultant multispectral images are typically georeferenced primarily based on the onboard GPS (Global Positioning System) and IMU (Inertial Measurement Unit)or accurate positional information of the pixels, or could be integrated with ground control points that are directly measured on the ground. However, due to the high cost of establishing GCP's prior to the georeferencing or for inaccessible areas, it is often required to derive the positions without such reference information. This study aims to provide a means to improve the georeferencing performance of a multispectral camera images without involving such ground reference points, but instead with the simultaneously onboard high resolution RGB camera. The exterior orientation parameters of the drone camera are first estimated through the bundle adjustment, and compared with the reference values derived with the GCP's. The results showed that the incorporation of the images from a high resolution RGB camera greatly improved both the exterior orientation estimation and the georeferencing of the multispectral camera. Additionally, an evaluation performed on the direction estimation from a ground point to the sensor showed that inclusion of RGB images can reduce the angle errors more by one order.

Performance Estimation of Large-scale High-sensitive Compton Camera for Pyroprocessing Facility Monitoring (파이로 공정 모니터링용 대면적 고효율 콤프턴 카메라 성능 예측)

  • Kim, Young-Su;Park, Jin Hyung;Cho, Hwa Youn;Kim, Jae Hyeon;Kwon, Heungrok;Seo, Hee;Park, Se-Hwan;Kim, Chan Hyeong
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • Compton cameras overcome several limitations of conventional mechanical collimation based gamma imaging devices, such as pin-hole imaging devices, due to its electronic collimation based on coincidence logic. Especially large-scale Compton camera has wide field of view and high imaging sensitivity. Those merits suggest that a large-scale Compton camera might be applicable to monitoring nuclear materials in large facilities without necessity of portability. To that end, our research group have made an effort to design a large-scale Compton camera for safeguard application. Energy resolution or position resolution of large-area detectors vary with configuration style of the detectors. Those performances directly affect the image quality of the large-scale Compton camera. In the present study, a series of Geant4 Monte Carlo simulations were performed in order to examine the effect of those detector parameters. Performance of the designed large-scale Compton camera was also estimated for various monitoring condition with realistic modeling. The conclusion of the present study indicates that the energy resolution of the component detector is the limiting factor of imaging resolution rather than the position resolution. Also, the designed large-scale Compton camera provides the 16.3 cm image resolution in full width at half maximum (angular resolution: $9.26^{\circ}$) for the depleted uranium source considered in this study located at the 1 m from the system when the component detectors have 10% energy resolution and 7 mm position resolution.

An Efficient Symbol Timing Synchronization Scheme for IEEE 802.11n MIMO-OFDM based WLAN Systems (IEEE 802.11n MIMO-OFDM 기반 무선 LAN 시스템을 위한 효율적인 심볼 동기 방법)

  • Cho, Mi-Suk;Jung, Yun-Ho;Kim, Jae-Seok
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.5
    • /
    • pp.95-103
    • /
    • 2009
  • An efficient symbol time synchronization scheme for IEEE 802.11n MIMO-OFDM based WLAN systems using cyclic shift diversity (CSD) preamble is proposed. CSD is used to prevent unintentional beamforming when the same preamble signal is transmitted through transmit antennas. However, it is difficult to find a proper starting-point of the OFDM symbol with the conventional algorithms because of time offset by multi-peaks which are result from cross-correlation of received CSD preamble with a known short training symbol. In addition, the performance of symbol time sync. is affected by AGC and packet detection position. In this paper, an optimal symbol time synch. algorithm which is composed of the boundary detection scheme between LTS and OFDM symbols, the verification scheme for enhancement of boundary detection accuracy, and the SNR-varying threshold estimation scheme is proposed. Simulation result show that the proposed algorithm has performance gains of 4.3dB in SNR compared to the conventional algorithms at the rate of 1% sync. failure probability for $2{\times}2$ MIMO-OFDM system and 18dB at 0.1% when maximum frequency offset exists. It also can be applied to $4{\times}4$ MIMO-OFDM system without any modification. Hence, it is very suitable for MIMO-OFDM WLAN systems using CSD preamble.