• Title/Summary/Keyword: Position correction

Search Result 645, Processing Time 0.03 seconds

PTV Margins for Prostate Treatments with an Endorectal Balloon (전립선 암의 방사선치료 시 직장 내 풍선삽입에 따른 계획표적부피마진)

  • Kim, Hee-Jung;Chung, Jin-Beom;Ha, Sung-Whan;Kim, Jae-Sun;Ye, Sung-Joon
    • Radiation Oncology Journal
    • /
    • v.28 no.3
    • /
    • pp.166-176
    • /
    • 2010
  • Purpose: To determine the appropriate prostate planning target volume (PTV) margins for 3-dimensitional (3D) conformal radiotherapy (CRT) and intensity-modulated radiation therapy (IMRT) patients treated with an endorectal balloon (ERB) under our institutional treatment condition. Materials and Methods: Patients were treated in the supine position. An ERB was inserted into the rectum with 70 cc air prior to planning a CT scan and then each treatment fraction. Electronic portal images (EPIs) and digital reconstructed radiographs (DRR) of planning CT images were used to evaluate inter-fractional patient's setup and ERB errors. To register both image sets, we developed an in-house program written in visual $C^{++}$. A new method to determine prostate PTV margins with an ERB was developed by using the common method. Results: The mean value of patient setup errors was within 1 mm in all directions. The ERB inter-fractional errors in the superior-inferior (SI) and anterior-posterior (AP) directions were larger than in the left-right (LR) direction. The calculated 1D symmetric PTV margins were 3.0 mm, 8.2 mm, and 8.5 mm for 3D CRT and 4.1 mm, 7.9 mm, and 10.3 mm for IMRT in LR, SI, and AP, respectively according to the new method including ERB random errors. Conclusion: The ERB random error contributes to the deformation of the prostate, which affects the original treatment planning. Thus, a new PTV margin method includes dose blurring effects of ERB. The correction of ERB systematic error is a prerequisite since the new method only accounts for ERB random error.

Analysis of Geolocation Accuracy of Precision Image Processing System developed for CAS-500 (국토관측위성용 정밀영상생성시스템의 위치정확도 분석)

  • Lee, Yoojin;Park, Hyeongjun;Kim, Hye-Sung;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.893-906
    • /
    • 2020
  • This paper reports on the analysis of the location accuracy of a precision image generation system manufactured for CAS 500. The planned launch date of the CAS 500 is 2021, and since it has not yet been launched, the analysis was performed using KOMPSAT-3A satellite images having similar specifications to the CAS 500. In this paper, we have checked the geolocation accuracy of initial sensor model, the model point geolocation accuracy of the precise sensor model, the geolocation accuracy of the precise sensor model using the check point, and the geolocation accuracy of the precise orthoimage using 30 images of the Korean Peninsula. In this study, the target geolocation accuracy is to have an RMSE within 2 pixels when an accurate ground control point is secured. As a result, it was confirmed that the geolocation accuracy of the precision sensor model using the checkpoint was about 1.85 pixels in South Korea and about 2.04 pixels in North Korea, and the geolocation accuracy of the precise orthoimage was about 1.15 m in South Korea and about 3.23 m in North Korea. Overall, it was confirmed that the accuracy of North Korea was low compared to that of South Korea, and this was confirmed to have affected the measured accuracy because the GCP (Ground Control Point) quality of the North Korea images was poor compared to that of South Korea. In addition, it was confirmed that the accuracy of the precision orthoimage was slightly lower than that of precision sensor medel, especially in North Korea. It was judged that this occurred from the error of the DTM (Digital Terrain Model) used for orthogonal correction. In addition to the causes suggested by this paper, additional studies should be conducted on factors that may affect the position accuracy.

Evaluation of Dose and Position Compensation of Parotid Gland Using CT On-rail System in Head-and-Neck Cancer (두경부 암환자 치료 시 CT On-rail System을 이용한 이하선의 위치 보정 및 선량 평가)

  • Jang, Hyeong-Jun;Im, Chung-Geun;Chun, Geum-Sung;Jeong, Il-Seon;Kim, Hoi-Nam
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.20 no.2
    • /
    • pp.83-89
    • /
    • 2008
  • Purpose: The checking method of target and normal structure are used by MVCBCT, KVCBCT, CT On-rail System, Ultrasound in H&N cancer patient. In case of MVCT, the utilization of bone structure is valuable to check around tissue. But the utilization of soft tissue is not enough. The point of this paper is dose variation in movable parotid and changeable volume of H&N cancer patient of CT On-rail System. Materials and Methods: The object of H&N cancer patient is 5 in this hospital. The selected patient are scanned ARTISTE CT Vision (CT On-ral System) a triweekly. After CT scanning, tranfered coordinates are obtained by movable of parotid gland comparison with planning image. Checking for the changeable volume of parotid gland. A Obtained CT image are tranfered to the RTP System. So dose variation are checked by following changed volume. Results: The changes of target coordinate by the parotid gland movement are X: -0.4~0.4 cm, Y: -0.4~0.3 cm, Z: -0.3~0.3 cm. the volume of GTV is decreased to about 7.11%/week and then both parotid gland volume are shrinked about 4.81%/week (Lt), 2.91%/week (Rt). At the same time, each parotid gland are diminished in radiation dose as 3.66%/week (Lt), 2.01%/week. Conclusion: Images from CT on the rail System which are able to aquire the better quality images of soft tissue in Target area than MVCBCT. After replanning and dose redistribution by required images, It could gain not only the correction of the patient set-tup errors but exact dose distribution. Accordingly, the delivery of compensated dose, It makes that we could do Adaptive Targeting Radiotherapy and need Real Time Adaptive Targeting Radiotherapy by reduce beam delivary time.

  • PDF

Terrain Shadow Detection in Satellite Images of the Korean Peninsula Using a Hill-Shade Algorithm (음영기복 알고리즘을 활용한 한반도 촬영 위성영상에서의 지형그림자 탐지)

  • Hyeong-Gyu Kim;Joongbin Lim;Kyoung-Min Kim;Myoungsoo Won;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.637-654
    • /
    • 2023
  • In recent years, the number of users has been increasing with the rapid development of earth observation satellites. In response, the Committee on Earth Observation Satellites (CEOS) has been striving to provide user-friendly satellite images by introducing the concept of Analysis Ready Data (ARD) and defining its requirements as CEOS ARD for Land (CARD4L). In ARD, a mask called an Unusable Data Mask (UDM), identifying unnecessary pixels for land analysis, should be provided with a satellite image. UDMs include clouds, cloud shadows, terrain shadows, etc. Terrain shadows are generated in mountainous terrain with large terrain relief, and these areas cause errors in analysis due to their low radiation intensity. previous research on terrain shadow detection focused on detecting terrain shadow pixels to correct terrain shadows. However, this should be replaced by the terrain correction method. Therefore, there is a need to expand the purpose of terrain shadow detection. In this study, to utilize CAS500-4 for forest and agriculture analysis, we extended the scope of the terrain shadow detection to shaded areas. This paper aims to analyze the potential for terrain shadow detection to make a terrain shadow mask for South and North Korea. To detect terrain shadows, we used a Hill-shade algorithm that utilizes the position of the sun and a surface's derivatives, such as slope and aspect. Using RapidEye images with a spatial resolution of 5 meters and Sentinel-2 images with a spatial resolution of 10 meters over the Korean Peninsula, the optimal threshold for shadow determination was confirmed by comparing them with the ground truth. The optimal threshold was used to perform terrain shadow detection, and the results were analyzed. As a qualitative result, it was confirmed that the shape was similar to the ground truth as a whole. In addition, it was confirmed that most of the F1 scores were between 0.8 and 0.94 for all images tested. Based on the results of this study, it was confirmed that automatic terrain shadow detection was well performed throughout the Korean Peninsula.

Usefulness of Stomach Extension after Drinking Orange Juice in PET/CT Whole Body Scan (PET/CT 전신 영상에서 오렌지 주스(Orange Juice)를 이용한 위장 확장 영상의 유용성)

  • Cho, Seok-Won;Chung, Seok;Oh, Shin-Hyun;Park, Hoon-Hee;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.1
    • /
    • pp.86-92
    • /
    • 2009
  • Purpose: The PET/CT has a clear distinction on the lesion of the functional image by adding anatomical information. It also could reduce the examination time using CT data as the attenuation-correction. When the stomach was contracted from a fast, it could bring a misinterpretation of the cancer of the lesion with a presence of physiological $^{18}F$-FDG uptake in stomach and it occasionally would bring an additional scan to confirm. To complement this shortcoming, the method that the patients had water before the examination to extend the stomach had been attempted. However, a short excretion time of the stomach did not give sufficiently extended image of the stomach. Then the patients had additional water and had the examination again. Therefore, the noticed fact is that the stomach excretion time depends on calories, protein content, and the level of carbohydrate. In this study, we use an orange juice to evaluate the extension of the stomach and usefulness of it. Materials and Methods: PET/CT scan were obtained on total 150 of patient from February 2008 to October2008, There were 3 groups in this study and each group had 50 patients. First group drank nothing, Second group drank water and third group drank orange juice. The patients (man 25, female 25) not drinking are the age of 30~71 years old (average: 54), the patients (man: 25, female: 25) drinking water (400 cc) are the age of 28~71 years old (average: 54) and the patients (man: 25, female: 25) drinking orange juice (400 cc) are the age of 32~74 years old (average: 56). The patients were fasted in 6-8 hours before the test, the patients were not diabetic. $^{18}F$-FDG 370~555 MBq were injected intravenously. The patients were in stable position for 1 hour, than the image was obtained. The patients drank water and other patients drank orange juice before Whole body scan. The image scan started from mid-femur to skull base. The emission scan acquired for three minutes per bed and the images were reconstructed. Stomach extension analysis is measured from vertical and horizontal length. Results: Stomach Extension was described as the vertical length of the Non Drink Group was $1.20{\pm}0.50\;cm$, horizontal length was $1.4{\pm}0.53\;cm$, the vertical length of the Water Drink Group was $1.67{\pm}0.63\;cm$, horizontal length was $1.65{\pm}0.77\;cm$, the vertical length of Orange juice Drink Group was $3.48{\pm}0.77\;cm$, horizontal length was $3.66{\pm}0.77\;cm$ in coronal image. Stomach Extension was described the vertical length of the Non Drink Group was $2.03{\pm}0.62\;cm$, horizontal length was $1.69{\pm}0.68\;cm$, the vertical length of Water Drink Group was $5.34{\pm}1.62\;cm$, horizontal length was $2.45{\pm}0.72\;cm$, the vertical length of Orange juice Drink Group was $7.74{\pm}1.62\;cm$, horizontal length was $3.57{\pm}0.77\;cm$ in transverse image. The Stomach Extension has specific differences (p<0.001). The SUVs shows the Non Drink Group were measured as Liver $2.52{\pm}0.42$, Lung $0.51{\pm}0.14$, the Water Drink Group were measured as Liver $2.47{\pm}0.38$, Lung $0.50{\pm}0.14$, Orange juice Drink Group were measured as Liver $2.47{\pm}0.38$, Lung $0.50{\pm}0.14$. The SUVs did not have specific differences (p>0.759). Conclusions: There was not a large difference of SUV in three groups. When the patients drank Orange juice and water, the range extension of stomach was higher than without drinking nothing and it was possible to acquire fully extended images. Therefore, it will be possible that unnecessary additional stomach scans will be reduced by drinking orange juice before the examination so that the patients' claim from uncomfortable and long period of fast will be minimized.

  • PDF