• Title/Summary/Keyword: Position Process

Search Result 2,807, Processing Time 0.036 seconds

A Study on the Optimization of Position Tolerance of Fasteners Considering Process Capability (공정능력을 고려한 체결구 부품의 위치공차 최적화 방법 연구)

  • Lee, Sang-Hyun;Lee, Tae-Gun;Chang, Sung-Ho
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2008.04a
    • /
    • pp.417-428
    • /
    • 2008
  • Designers have to consider voice of customer, process capability, manufacturing standards & condition, manufacturing method, characteristics of products to decide tolerances. Especially, in case of position of hole and pin, designers have to consider process capability to decide tolerances. The traditional position tolerances used in a drawing are theoretical values which are allocated to position under the worst case assembling condition that both hole and pin are the maximum material condition(MMC). However, When the process capability is high, more exact product size can be produced under stable manufacturing condition. larger clearance of hole and pin can be allocated. In this point of view, manufacturer could increase the yield by allocating larger position tolerance than theoretical position tolerance of hole and pin considering process capability.

  • PDF

A Study on the Optimization of Position Tolerance of Fasteners Considering Process Capability (공정능력을 고려한 체결구 부품의 위치공차 최적화 방법 연구)

  • Lee, Sang-Hyun;Lee, Tae-Geun;Chang, Sung-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.1
    • /
    • pp.75-85
    • /
    • 2009
  • Designers have to consider voice of customer, process capability, manufacturing standards & condition, manufacturing method and characteristics of products to decide tolerances. Especially, in case of position of hole and pin, designers have to consider process capability to decide tolerances. The traditional position tolerances used in a drawing are theoretical values which are allocated to position under the worst case assembling condition that both hole and pin are the maximum material condition(MMC). However, when the process capability is high, more exact product size can be produced under stable manufacturing condition. Larger clearance of hole and pin can be allocated. In this point of view, manufacturer could increase the yield by allocating larger position tolerance than theoretical position tolerance of hole and pin considering process capability.

Application of Normality Test and Classification of Process Capability Index (공정능력지수의 유형화 및 정규성 검정의 응용)

  • Choe, Seong-Un
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2011.11a
    • /
    • pp.551-556
    • /
    • 2011
  • This research presents an implementation strategy of Process Capability Index (PCI) according to the types of process characteristics. The types of process feature are classified as four perspectives of variation range, time period, error position, and process stage. The paper examines short-term or long-term PCI, within or between variation, position of precision or accuracy, and inclusion of measurement or calibration stage. Moreover, the study proposes normality test of unilateral PCI.

  • PDF

Determination of Gate Position Considering Robustness in Injection Mold Design (사출금형 설계에서 강건성을 고려한 게이트 위치의 결정)

  • Park, Jong-Cheon;Kim, Kyung-Mo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.113-118
    • /
    • 2017
  • In this paper, we propose a design procedure for determining the gate position robust to changes and inherent fluctuations in the process conditions during injection molding. To evaluate the robustness of the gate position, the signal-to-noise ratio is used, and noise conditions are implemented using orthogonal arrays, where the process variables are considered as noise factors and possible process fluctuations are set as the levels of the noise factors. To show the usefulness of the proposed robust design procedure, we apply it to a computer CPU baseplate. As a result, it is shown that a robust gate position can be determined that reduces the average warpage deflection by 2.4% and 1.7%, and the variance by 3.4% and 5.1%, compared to the two initial gate positions.

Calculating Cp of Position Tolerance when MMC Applied at Datum and Position Tolerance (데이텀과 위치공차에 최대실체조건이 적용되었을 경우의 위치공차의 Cp)

  • Kim, Jun-Ho;Chang, Sung-Ho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.3
    • /
    • pp.1-6
    • /
    • 2017
  • Process capability is well known in quality control literatures. Process capability refers to the uniformity of the process. Obviously, the variability in the process is a measure of the uniformity of output. It is customary to take the 6-sigma spread in the distribution of the product quality characteristic as a measure of process capability. However there is no reference of process capability when maximum material condition is applied to datum and position tolerance in GD&T (Geometric Dimensioning and Tolerancing). If there is no material condition in datum and position tolerance, process capability can be calculated as usual. If there is a material condition in a feature control frame, bonus tolerance is permissible. Bonus tolerance is an additional tolerance for a geometric control. Whenever a geometric tolerance is applied to a feature of size, and it contains an maximum material condition (or least material condition) modifier in the tolerance portion of the feature control frame, a bonus tolerance is permissible. When the maximum material condition modifier is used in the tolerance portion of the feature control frame, it means that the stated tolerance applies when the feature of size is at its maximum material condition. When actual mating size of the feature of size departs from maximum material condition (towards least material condition), an increase in the stated tolerance-equal to the amount of the departure-is permitted. This increase, or extra tolerance, is called the bonus tolerance. Another type of bonus tolerance is datum shift. Datum shift is similar to bonus tolerance. Like bonus tolerance, datum shift is an additional tolerance that is available under certain conditions. Therefore we try to propose how to calculate process capability index of position tolerance when maximum material condition is applied to datum and position tolerance.

Position welding using disk laser-GMA hybrid welding (디스크 레이저-아크 하이브리드 용접을 이용한 포지션 용접)

  • Lim, Hyun-Sik;Kim, Jung-Hak;Kim, Cheol-Hee;Kim, Jeong-Han
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1299-1306
    • /
    • 2007
  • The combination of laser beam and electric arc sharing common weld pool has widely been investigated since the late seventies, but it is beginning of the industrial uses. Recently, laser-GMA hybrid welding process showed possibility to overcome the tight gap tolerance with improved productivity. The laser-arc hybrid welding process is inherently complex because it has three kinds of process parameters: arc welding, laser welding and hybrid welding parameters. In this study, the optimum range of the process parameters were determined by high speed image analysis which could unveil the welding phenomena in laser-arc hybrid welding. The laser-arc hybrid welding was applied for position welding from the flat position to the overhead position and the welding characteristics were investigated.

  • PDF

Web Guide Process in Cold Rolling Mill : Modeling and PID Controller

  • Ahn, Byoung-Joon;Park, Ju-Yong;Chang, Yu-Shin;Lee, Man-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1074-1085
    • /
    • 2004
  • There are many intermediate web guides in cold rolling mills process such as CRM (cold rolling mill), CGL (continuous galvanizing line), EGL (electrical galvanizing line) and so on. The main functions of the web guides are to adjust the center line of the web (strip) to the center line of the steel process. So they are called CPC (center position control). Rapid process speed cause large deviation between the center position of the strip and the process line. Too much deviation is not desirable. So the difference between the center position of the strip and the process line should be compensated. In general, the center position control of the web is obtained by the hydraulic driver and electrical controller. In this paper, we propose modelling and several controller designs for web-guide systems. We model the web and guide by using geometrical relations of the guide ignored the mass and stiffness of the web. To control the systems, we propose PID controllers with their gains tuned by the Ziegler-Nichols method, the H$\_$$\infty$/ controller model-matching method, and the coefficient diagram method (CDM). CDM is modified for high order systems. The results are verified by computer simulations.

AVM Stop-line Detection based Longitudinal Position Correction Algorithm for Automated Driving on Urban Roads (AVM 정지선인지기반 도심환경 종방향 측위보정 알고리즘)

  • Kim, Jongho;Lee, Hyunsung;Yoo, Jinsoo;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.2
    • /
    • pp.33-39
    • /
    • 2020
  • This paper presents an Around View Monitoring (AVM) stop-line detection based longitudinal position correction algorithm for automated driving on urban roads. Poor positioning accuracy of low-cost GPS has many problems for precise path tracking. Therefore, this study aims to improve the longitudinal positioning accuracy of low-cost GPS. The algorithm has three main processes. The first process is a stop-line detection. In this process, the stop-line is detected using Hough Transform from the AVM camera. The second process is a map matching. In the map matching process, to find the corrected vehicle position, the detected line is matched to the stop-line of the HD map using the Iterative Closest Point (ICP) method. Third, longitudinal position of low-cost GPS is updated using a corrected vehicle position with Kalman Filter. The proposed algorithm is implemented in the Robot Operating System (ROS) environment and verified on the actual urban road driving data. Compared to low-cost GPS only, Test results show the longitudinal localization performance was improved.

A Study on the Weld Line Position Optimization for Hydroforming (Hydroforming을 위한 Weld line 최적배치에 관한연구)

  • 전병희
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.160-168
    • /
    • 2000
  • Hydroforming is a metal forming process that enables circular metal tubes to be formed in to the parts with the complex cross section along the curved axial direction. Recently this hydroforming process is largely used for the production of the automotive parts. This paper presents the results of tube bending and hydroforming simulations in cases of the varying weld line positions of the tube. Ten cases of prebending and hydroforming simulations are carried out to find the optiaml weld line position.

  • PDF

Development of an Automatic Label Attaching System Using a Robot Vision in Variable Situation

  • Lee, Young-Jung
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.225-230
    • /
    • 2004
  • A cold & hot rolling coil production line of iron nill consists of a kind of coherent automatic process, but an automatic labelling process still had technical difficulties in the automation of its process. The reason for difficulties in building an automatic process is that quantitative data for each rolled coil from every shipping is not easy to receive from the previous process. it is not possible to apply for a general and simple purpose robot that is actually worked through a taught position to the process because the size and direction of the coi1 has differed on every shipping. From these reasons. we introduce a robot vision system to accept an expected variable situation and to ensure the stability and flexibility of the process. This paper examines a study applied for similar cases and finds the position and direction of relied coil using the moment invariant algorithm proposed by Hu. In addition. the camera calibration and position error compensation algorithm is applied by the analysis of the relationship of transition in a space coordinate system. The construction of a robot vision system proposed by this paper is a more intellectual system than that of the automatic labelling system. which is already used to the Daihen steel nill of NEW JAPAN steel mill co. Ltd in Japan, and shows a better independent operation in the field of production.

  • PDF