• Title/Summary/Keyword: Position Problem

Search Result 1,991, Processing Time 0.036 seconds

Image-based Visual Servoing for Automatic Recharging of Mobile Robot (이동로봇의 자동충전을 위한 영상기반 비쥬얼 서보잉 방법)

  • Song, Ho-Bum;Cho, Jae-Seung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.664-670
    • /
    • 2007
  • This study deals with image-based visual servoing for automatic recharging of mobile robot. Because mobile robot must be recharged periodically, it is necessary to detect and move to docking station. Generally, laser scanner is used for detect of position of docking station. CCD Camera is also used for this purpose. In case of using cameras, the position-based visual servoing method is widely used. But position-based visual servoing method requires the accurate calibration and it is hard and complex work. Another method using cameras is image-based visual servoing. Recently, image based visual servoing is widely used for robotic application. But it has a problem that cannot have linear trajectory in the 3-dimensional space. Because of this weak point, image-based visual servoing has a limit for real application. In case of 2-dimensional movement on the plane, it has also similar problem. In order to solve this problem, we point out the main reason of the problem of the resolved rate control method that has been generally used in the image-based visual servoing and we propose an image-based visual servoing method that can reduce the curved trajectory of mobile robot in the cartesian space.

Position-Attitude Coupling Motion Using Dual Quaternion in Spacecraft Proximity Operation (듀얼 쿼터니언을 이용한 인공위성 근접운용에서의 위치-자세 결합운동 연구)

  • Na, Yunju;Bang, Hyochoong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.11
    • /
    • pp.795-802
    • /
    • 2019
  • This paper deals with position-attitude coupling motion during spacecraft relative operation, and suggests dual quaternion-based kinematics for the problem. The position-attitude coupling motion can occur when the target point is located at an arbitrary point on the satellite body, not the center of mass. This is especially apparent in close proximity operation case. The dual quaternion-based kinematics directly reflects the angular velocity state, so that the coupling motion in which the change of attitude affects the position can be concisely defined. In this study, a new dual quaternion-based kinematics is presented along with a conventional approach to solve the coupling problem. Numerical simulations show that the position error for the target point is generated by the coupling motion, and verify that the dual quaternion-based kinematics can solve this problem.

High Precision Solenoid Type Nuclear Reactor Control Rod Position Indicator (고정밀도 솔레노이드 방식의 원자로 제어봉 위치지시기)

  • Baek, Min-Ho;Hong, Hoon-Bin;Park, Hee-June
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.11
    • /
    • pp.1848-1853
    • /
    • 2016
  • Control Rod Position Indicator in nuclear reactor vessel has developed for small reactor in Korea. Because of severe environment in reactor vessel, target of this study is to develop the suitable position indicator. In this study, solenoid type position indicator made of Mineral Insulated Cable(MI Cable) was introduced to adapt in severe environment. And inductance of the solenoid was used to indicate the rod position for high precision. But problem of this concept is that a linear slope of inductance is changed by temperature effect. To resolve this problem, two sensing coils were introduced for temperature compensation. A role of the sensing coil is to make reference linear equation about certain temperature. To confirm this concept, also, inductance of solenoid and sensing coils were measured at room and high temperature (${\sim}300^{\circ}C$). The results of measurement show that the position error of sensing coil between room and high temperature was about 2%. But it was identified that this error was resulted from insufficient test environment (temperature error between solenoid and sensing coils was about 2% at high temperature condition). Therefore, solenoid type position indicator shows that it is very suitable in reactor vessel as a high precision rod position indicator.

Analysis of Mass Position Detection Using the Change of the Structural Dynamic Characteristics (동특성 변화로부터 구조물의 변경질량 위치 해석)

  • 이정윤
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.120-126
    • /
    • 2004
  • This study proposed the analysis of mass position detection due to the change of the mass and strifeless of structure by using the original and modified dynamic characteristics. The method is applied to examples of the cantilevers beam and the 3 degrees of freedom system by modifying the mass. The predicted detection of the mass positions and magnitudes are in good agrement with the present study from the structural reanalysis using the modified mass.

A Study on the Current Status and Analysis on the Problem of Unfloored space and Floor Repair in Rural House (농촌주택의 봉당·마루 개보수 현황 및 문제점 분석)

  • Park, Gil-Beom;Park, Jun-Mo;Kim, Ok-Kyue
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.117-118
    • /
    • 2014
  • The unfloored space and floor is one of characteristic of traditional house in Korea. This space is used to connecting passage between room or entrance of house. Currently, according to decline of heat insulation property thereby becoming decrepit house, native is repairing it for block external environment such as rain, wind and so on. But, variety problem is happening from wrong repair. This object of this study is current status and analysis on problem of unfloored space and floor repair. As a result, current status of repair is classified repair type, installation position and using form. And position of problem is confirmed connection between original house and extend space.

  • PDF

Prosthodontic treatment for cases with poor implant position and orientation (임플란트의 위치와 방향이 좋지 않은 증례의 보철 치료)

  • Noh, Kwantae
    • The Journal of the Korean dental association
    • /
    • v.58 no.9
    • /
    • pp.583-589
    • /
    • 2020
  • If the implant is planted in the wrong position or direction, it is disadvantageous for stress distribution, and it is easy to cause complications such as screw loosening, abutment fracture, and implant fracture. If the position or orientation of the implant is not good, efforts should be made to minimize the problem through proper implant prosthetic treatment. In this article, the prosthetic method for facilitating future maintenance in cases with poor implant placement or orientation will be presented.

  • PDF

Position Determination Algorithm for Geometry PIG (Geometry PIG를 위한 위치 결정 알고리즘)

  • Yu, Jae-Jong;Han, Hyung-Seok;Park, Chan-Gook;Lee, Jang-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.1935-1937
    • /
    • 2001
  • In this paper, the position determination problem for geometry PIG is considered. The PIG system is a device to examine the gas pipeline condition and detect the accurate position of dent or any undesirable state. In order to determine the position, the smoothing algorithm has been used and its performance anyalsis has been done by Monte Carlo simulation technigue.

  • PDF

Experimental Results of Adaptive Load Torque Observer and Robust Precision Position Control of PMSM (PMSM의 정밀 Robust 위치 제어 및 적응형 외란 관측기 적용 연구)

  • Go, Jong-Seon;Yun, Seong-Gu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.3
    • /
    • pp.117-123
    • /
    • 2000
  • A new control method for precision robust position control of a PMSM (Permanent Magnet Synchronous Motor) using asymptotically stable adaptive load torque observer is presented in the paper. Precision position control is obtained for the PMSM system approximately linearized using the field-orientation method. Recently, many of these drive systems use the PMSM to avoid backlashes. However, the disadvantages of the motor are high cost and complex control because of nonlinear characteristics. Also, the load torque disturbance directly affects the motor shaft. The application of the load torque observer is published in [1] using fixed gain. However, the motor flux linkage is not exactly known for a load torque observer. There is the problem of uncertainty to obtain very high precision position control. Therefore, a model reference adaptive observer is considered to overcome the problem of unknown parameter and torque disturbance in this paper. The system stability analysis is carried out using Lyapunov stability theorem. As a result, asymptotically stable observer gain can be obtained without affecting the overall system response. The load disturbance detected by the asymptotically stable adaptive observer is compensated by feedforwarding the equivalent current which gives fast response. The experimental results are presented in the paper using DSP TMS320c31.

  • PDF

Novel PWM Method with Low Ripple Current for Position Control Applications of BLDC Motors

  • Kim, Hag-Wone;Shin, Hee-Keun;Mok, Hyung-Soo;Lee, Yong-Kyun;Cho, Kwan-Yuhl
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.726-733
    • /
    • 2011
  • BLDC Motors are widely used in various speed control applications due to their ease of control and low cost. Generally, the unipolar PWM method is used for speed control applications. However, the unipolar PWM method has a current spike problem in the braking operation which can be a problem in speed reversal which generally happens in position control applications. However, the current spike problem can be solved by the conventional bipolar PWM method. Although the current spike problem can be solved, the conventional bipolar PWM method has the problem of a large current ripple. In this paper, a novel bipolar PWM method is proposed to solve this problem. The current ripple and the current spike problems are analyzed in this paper for the unipolar and bipolar PWM methods. At last, the merits of the proposed bipolar PWM method are proven by experiment.

Korean Coreference Resolution using Stacked Pointer Networks based on Position Encoding (포지션 인코딩 기반 스택 포인터 네트워크를 이용한 한국어 상호참조해결)

  • Park, Cheoneum;Lee, Changki
    • KIISE Transactions on Computing Practices
    • /
    • v.24 no.3
    • /
    • pp.113-121
    • /
    • 2018
  • Position encoding is a method of applying weights according to position of words that appear in a sentence. Pointer networks is a deep learning model that outputs corresponding index with an input sequence. This model can be applied to coreference resolution using attribute. However, the pointer networks has a problem in that its performance is degraded when the length of input sequence is long. To solve this problem, we proposed two contributions to resolve the coreference. First, we applied position encoding and dynamic position encoding to pointer networks. Second, we stack deeply layers of encoder to make high-level abstraction. As results, the position encoding based stacked pointer networks model proposed in this paper had a CoNLL F1 performance of 71.78%, which was improved by 6.01% compared to vanilla pointer networks.