• Title/Summary/Keyword: Position Problem

Search Result 1,998, Processing Time 0.03 seconds

Evaluation of proximal contact strength by postural changes

  • Kim, Hee-Sun;Na, Hyun-Joon;Kim, Hee-Jung;Kang, Dong-Wan;Oh, Sang-Ho
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.3
    • /
    • pp.118-123
    • /
    • 2009
  • STATEMENT OF PROBLEM. Proper proximal contact is important for maintaining and stabilizing the dental arch. However, the proximal contact strength (PCS) is not a constant value and can be affected by a variety of factors. PURPOSE. This study examined the influences of postural changes on the posterior PCS. MATERIAL AND METHODS. Twelve adults with a normal occlusion and had not undergone prosthetic treatment or proximal restoration were participated in this study. A metal strip was inserted into the proximal surface and removed at a constant velocity. The contact strength was measured in every contact point between canine to second molar in both arches. The PCSs were obtained initially in the upright position, secondly in the supine position and finally in the upright position again. All measurements were repeated after a 2 hour period. Statistical analysis was carried out using the Friedman test (P < .05). RESULTS. Generally, a decrease in PCS occurred when the posture was changed from the initial upright to supine position, while it increased when the posture was changed from the supine to upright position. A significant change was observed in all areas except for between the canine-first premolar in the maxilla and between the first molar-second molar in the mandible areas. CONCLUSION. The posterior PCS, which dentists generally believe to be a static feature of occlusion, is affected significantly by posture.

A Study of Adaptive Load Torque Observer and Robust Precision Position Control of BLDD Motor (직접 구동용 BLDC 전동기의 정밀 Robust 위치제어 및 적응형 외란 관측기 연구)

  • 고종선;윤성구
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.138-143
    • /
    • 1999
  • A new control method for the precision robust position control of a brushless DC(BLDC) motor for direct drive m motor(BLDDM) system using the asymptotically stable adaptive load torque observer is presented. A precision position c control is obtained for the BLDD motor system appro성mately linearized using the fieldlongrightarroworientation method. Many of t these motor systems have BLDD motor to obtain no backlashes. On the other hand, it has disadvantages such as the h high cost and more complex controller caused by the nonlinear characteristics. And the load torque disturbance is d directly affected to a motor shaft. To r밍ect this problem, stability analysis is calTied out using Lyapunov stability t theorem. Using this results, the stability is proved and load disturbance detected by the asymptotically stable adaptive observer is compensated by feedforwarding the equivalent CUlTent having the fast response.

  • PDF

Position Control for Interior Permanent Magnet Synchronous Motors using an Adaptive Integral Binary Observer

  • Kang, Hyoung-Seok;Kim, Cheon-Kyu;Kim, Young-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.240-248
    • /
    • 2009
  • An approach to control the position for an interior permanent magnet synchronous motor (IPMSM) based on an adaptive integral binary observer is described. The binary controller with a binary observer is composed of a main loop regulator and an auxiliary loop regulator. One of its key features is that it alleviates chatter in the constant boundary layer. However, steady state estimation accuracy and robustness are dependent upon the thickness of the constant boundary layer. In order to improve the steady state performance of the binary observer and eliminate the chattering problem of the constant boundary layer, a new binary observer is formed by adding extra integral dynamics to the existing switching hyperplane equation. Also, the proposed adaptive integral binary observer applies an adaptive scheme because the parameters of the dynamic equations such as the machine inertia and the viscosity friction coefficient are not well known. Furthermore, these values can typically be easily changed during normal operation. However, the proposed observer can overcome the problems caused by using the dynamic equations, and the rotor position estimation is constructed by integrating the rotor speed estimated with a Lyapunov function. Experimental results obtained using the proposed algorithm are presented to demonstrate the effectiveness of the approach.

Fuzzy Inference System Based Multiple Neural Network Controllers for Position Control of Ultrasonic Motor (퍼지 추론 시스템 기반의 다중 신경회로망 제어기를 이용한 초음파 모터의 위치제어)

  • Choi, Jae-Weon;Min, Byung-Woo;Park, Un-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.209-218
    • /
    • 2001
  • Ultrasonic motors are newly developed motors which are expected to be useful as actuators in many practical systems such as robot arms or manipulators because of several advantages against the electromagnetic motors. However, the precise control of the ultrasonic motor is generally difficult due to the absence of appropriate and rigorous mathematical model. Furthermore, owing to heavy nonlinearity, the position control of a pendulum system driven by the ultrasonic motor has a problem that control method using multiple neural network controllers based on a fuzzy inference system that can determine the initial position of the pendulum in the beginning of control operation. In addition, and appropriate neural network controller that has been learned to operate well at the corresponding initial position is adopted by switching schemes. The effectiveness of the proposed method was verified and evaluated from real experiments.

  • PDF

The Sensorless Control of PMSM Using the Coordinate Transform and Differential Method (좌표 변환과 미분 기법을 이용한 PMSM의 센서리스 제어)

  • Choi, Chul;Won, Tae-Hyun;Park, Sung-Jun;Park, Han-Woong;Kim, Chul-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.107-115
    • /
    • 2003
  • PMSM(permanent magnet synchronous motor) are widely used in industrial and home appliance because of their high torque to inertia ratio, superior power density, and high efficiency For the high control performance, accurate information of rotor position Is essential. In recent, sensorless algorithms are much studied due to high cost problem of position sensor and low reliability in harsh environment. In the proposed method, a differential linkage flux is used for the estimation of rotor position. The differential magnetic field flux is calculated by the voltage equations and measured phase current without any integration and differential calculus. Instead of linkage flux calculation with differential operation, a new mathematical differential method is introduced by a-$\beta$ transformation. The proposed novel position sensorless speed control scheme is verified through experimental results.

Step size determination method using neural network for personal navigation system (개인휴대 추측항법 시스템을 위한 신경망을 이용한 보폭 결정 방법)

  • 윤선일;홍진석;지규인
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.80-80
    • /
    • 2000
  • The GPS can provide accurate position information on the earth. But GPS receiver can't give position information inside buildings. DR(Dead-Reckoning) or INS(Inertial Navigation System) gives position information continuously indoors as well as outdoors, because they do not depend on the external navigation information. But in general, the inertial sensors severely suffer from their drift errors, the error of these navigation system increases with time. GPS and DR sensors can be integrated together with Kalman filter to overcome these problems. In this paper, we developed a personal navigation system which can be carried by person, using GPS and electronic pedometer. The person's footstep is detected by an accelerometer installed in vertical direction and the direction of movement is sensed by gyroscope and magnetic compass. In this case the step size is varying with person and changing with circumstance, so determining step size is the problem. In order to calculate the step size of detected footstep, the neural network method is used. The teaming pattern of the neural network is determined by human walking pattern data provided by 3-axis accelerometer and gyroscope. We can calculate person's location with displacement and heading from this information. And this neural network method that calculates step size gives more improved position information better than fixed step size.

  • PDF

Force and Position Control of a Two-Link Flexible Manipulator with Piezoelectric Actuators (압전 작동기를 갖는 2 링크 유연 매니퓰레이터의 힘 및 위치 제어)

  • 김형규;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.428-433
    • /
    • 1997
  • This paper presents a new control strategy for the position and force control of flexible manipulators. The governing equation of motion of a two-link flexible manipulator which features piezoceramic actuators bonded on each flexible beam is derived via Hamilton's principle. The control torque of the motor to command desired position and force is determined by a sliding mode controller on the basis of the rigid-mode dynamics. In the controller formulation, the sliding mode controller with perturbation estimation(SMCPE) is adopted to determine appropriate control gains. The SMCPE is then incorporated with the fuzzy technique to mitigate inherent chattering problem while maintaining the stability of the system. A set of fuzzy parameters and control rules are obtained from a relation between estimated perturbation and actual perturbation. During the commanded motion, undesirable oscillation is actively suppressed by applying feedback control voltages to the piezoceramic actuators. These feedback voltages are also determined by the SMCPE. Consequently, accurate force and position control of a two-link flexible manipulator are achieved. Computer simulations are undertaken in order to demonstrate the effectiveness of the proposed control methodology.

  • PDF

A Study on the Observer Design for Brushless Permanent-Magnet Synchronous Motor (브러쉬없는 영구자석형 동기모터의 관측자 구성에 관한 연구)

  • Rhee, Jun-Seong;Lee, Je-Hie;Yang, Nam-Yeol;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.39-42
    • /
    • 1994
  • The application of speed or position control technique in AC drives demands accurate position and velocity feedback information. Generally, resolver and absolute encoders are used as a velocity or position sensor. But they increase cost and when the sampling frequency is faster than sensoer's output frequency we can't Set exact information. In order to solve this problem this thesis proposes a speed and a position observer design for Permanent-Magnet Synchronous Motors(PMSM) specialty in low speed drives. Most literatures on this topic design the observer based on the field_oriented d_q model. But in this thesis, a new approach to machine dynamics is proposed. Since it is difficult to design the observer using the nonlinear model, the machine model is here linearlized at the operating point. The observer designed is implemented by software using Intel's 8097 microprocessor and verifies the proper performance of observer by simulation and experiment.

  • PDF

A Study on the Applicability of the Kinematic and the Static GPS Methods for Coastal Ocean Structure Survey

  • Lee, Byung-Gul;Yang, Sung-Kee;Kang, In-Jun
    • Journal of Environmental Science International
    • /
    • v.11 no.2
    • /
    • pp.103-110
    • /
    • 2002
  • The position fixing usually is determined by triangulation, traverse surveying and astronomy surveying. However, when the station is moving, it is impossible to determine its position continuously by the former method. By a satellite positioning method(GPS), this problem can be solved. In our study, we used two methods to determine the length and coordinate of a point position. One is a kinematic GPS method and the other is a static one. Each is based on carrier phase measurement and employs a relative position technique. We implemented observation experiments such as Geodimeter and DGPS(Differential GPS) successfully. To estimate the accuracy between the kinematic and static methods, we compared the results of Geodimeter, the kinematic, and the static. The results showed that the static is relatively a little more accurate than the kinematic. However, in the kinematic mode, when we received the GPS data for a long time, we found that the kinematic also had a high accuracy value for the length survey Finally, we applied the GPS to Jeju Harbor Breakwater to examine the applicability of GPS for coastal ocean structure based on the kinematics and the statics, respectively.

Design of the Position Control System for Parabolic Antenna using Gyro Sensor (자이로센서를 이용한 파라볼릭 안테나의 위치제어시스템 설계)

  • Kim, Myeong Kyun;Kim, Jin Soo;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.85-91
    • /
    • 2013
  • In this paper, the parabolic antenna aims to the precise location of a moving ship or car that can be designed system using the gyro sensor. The parabolic antenna has controlled by stepping motor that is a lot of noise and slow response of speed. It has solved the problem which is noise and slow response using the BLDC motor. Also, in order to suppress the noise two-axis control and a separate encoder to the six degrees of freedom motion system was implemented in a precise location. Generally, the gyro sensor is not required to system that doesn't move the six degrees of freedom motion system. But the system will be applied to the moving such as ships or cars. Finally, we presented the position control algorithm at the sometimes controlled both gyro sensor and BLDC motor. This system was tracking that the location of the antenna to the desired angle and errors almost didn't happen when the system was moved 6 degrees of freedom.