• Title/Summary/Keyword: Position Estimation Error

Search Result 437, Processing Time 0.023 seconds

A Study on the PES Estimation for Developing High-TPI HDD (HIGH-TPI HDD 구현을 위한 PES ESTIMATION에 관한 연구)

  • Koh, Jeong-Seok;Kang, Seong-Woo;Han, Yun-Sik;Kim, Young-Hoon;Hwang, Tae-Yeon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.122-127
    • /
    • 2002
  • A frequency-domain PES estimation and its prediction method are proposed for the tightly-coupled servo/mechanical design of high-TPI HDD system above 100 kTPI. The major two disturbance energies which are related with mechanical vibrations inside of HDD are used to predict the drive-level PES, while considering closed-loop servo dynamics. One is the torque disturbance which mainly comes from aerodynamic excitation of HSA system and the other is the displacement disturbance from disk-spindle dynamics. In order to obtain the accurate error transfer function of closed-loop servo control, the plant model is measured by accurate experiment. The measured PES is compared with predicted one in terms of frequency-domain PES spectrum and its standard variation value. It is proved that the proposed frequency-domain PES estimation/prediction method is capable of predicting drive-level PES of high-TPI hard disk drive.

  • PDF

Performance Investigation of Space-Time Block Coded Multicarrier DS-CDMA in Time-Varying Channels

  • Narzullaev, Anvar;Ryu, Kwan-Woong;Park, Yong-Wan
    • ETRI Journal
    • /
    • v.28 no.5
    • /
    • pp.684-687
    • /
    • 2006
  • In this letter, we evaluate the system performance of a space-time block coded (STBC) multicarrier (MC) DS-CDMA system over a time selective fading channel, with imperfect channel knowledge. The average bit error rate impairment due to imperfect channel information is investigated by taking into account the effect of the STBC position. We consider two schemes: STBC after spreading and STBC before spreading in the MC DS-CDMA system. In the scheme with STBC after spreading, STBC is performed at the chip level; in the scheme with STBC before spreading, STBC is performed at the symbol level. We found that these two schemes have various channel estimation errors, and that the system with STBC before spreading is more sensitive to channel estimation than the system with STBC after spreading. Furthermore, derived results prove that a high spreading factor (SF) in the MC DS-CDMA system with STBC before spreading leads to high channel estimation error, whereas for a system with STBC after spreading this statement is not true.

  • PDF

Effects of Parameter Errors on Sensorless Operation of PMSM (영구자석 동기 전동기의 제정수 오차가 센서리스 운전에 미치는 영향)

  • Park, Yong-Soon;Sul, Seung-Ki;Ji, Jun-Keun;Park, Young-Jae;Lee, Dong-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.71-78
    • /
    • 2011
  • In this paper, the effect of parameter errors to the estimation of the rotor angle in sensorless operation of a permanent magnet synchronous motor is analyzed. The angle error information which is utilized to estimate the rotor position can be classified into two factors, namely, the sign factor and the gain factor. This paper particularly focuses on parameter errors reflected in the sign factor of the angle error information which causes a deviation in the angle estimation. In this paper, mathematical expressions describing the deviation of the angle estimation due to the inductance error and the resistance error in the sensorless control are derived. The validity of the expression is verified by the computer simulations and the experimental results.

Sensorless IPMSM Drives based on Extended Nonlinear State Observer with Parameter Inaccuracy Compensation

  • Mao, Yongle;Liu, Guiying;Chen, Yangsheng
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.3
    • /
    • pp.289-297
    • /
    • 2014
  • This paper proposed a novel high performance sensorless control scheme for IPMSM based on an extended nonlinear state observer. The gain-matrix of the observer has been derived by using state linearization method. Steady state errors in estimated rotor position and speed due to parameter inaccuracy have been analyzed, and an equivalent flux error is defined to represent the overall effect of parameter errors contributing to the wrong convergence of the estimated rotor speed as well as rotor position. Then, an online compensation strategy was proposed to limit the estimation errors in rotor position and speed. The effectiveness of the extended nonlinear state observer is validated through simulation and experimental test.

Position Location of Mobile Terminal in Wireless MIMO Communication Systems

  • Li, Ji;Conan, Jean;Pierre, Samuel
    • Journal of Communications and Networks
    • /
    • v.9 no.3
    • /
    • pp.254-264
    • /
    • 2007
  • A promising approach to improve the performance of mobile location system is the use of antenna arrays in both transmitter and receiver sides. Using advanced array signal processing techniques, such multiple-input multiple-output (MIMO) communication systems can offer more mobile location information by exploiting the spatial properties of the multipath channel. In this paper, we propose a novel approach to determine the position of mobile terminal based on estimated multipath signal parameters using only one base station in MIMO communication systems. This approach intends to minimize the error occurring from the estimation of multiple paths and gives an optimal estimation of the position of mobile terminal by simultaneously calculating a set of nonlinear location equations. This solution breaks the bottleneck of conventional mobile location systems which have to require multilateration of at least three base stations.

Development of a 3D Localization Algorithm Using Hull Geometry Information (선체 형상 정보를 활용한 3차원 위치인식 알고리즘 개발)

  • Mingyu Jang;Jinhyun Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.300-306
    • /
    • 2023
  • A hull-cleaning robot sticks to the surface of a vessel and moves for efficient cleaning. Precise path planning and tracking using the current position is crucial. Many robots rely on the INS algorithm, but errors accumulate. To fix this, GPS, sonar, and USBL are used, though with limitations. Selecting suitable sensors for the surface operation and accurate positioning algorithm are vital. In this study, we developed a robot position estimation algorithm using the structure of a ship. Problems that arise when expanding the 2D position estimation algorithm used in existing wall structures to 3D were evaluated and methods for solving them were proposed. In addition, we aimed to improve performance by deriving singularities that exist in the robot path and proposing an error correction algorithm based on the singularities.

A Study on Odometry Error Compensation using Multisensor fusion for Mobile Robot Navigation (멀티센서 융합을 이용한 자율이동로봇의 주행기록계 에러 보상에 관한 연구)

  • Song, Sin-Woo;Park, Mun-Soo;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.288-291
    • /
    • 2001
  • This paper present effective odometry error compensation using multisensor fusion for the accurate positioning of mobile robot in navigation. During obstacle avoidance and wall following of mobile robot, position estimates obtained by odometry become unrealistic and useless because of its accumulated errors. To measure the position and heading direction of mobile robot accurately, odometry sensor a gyroscope and an azimuth sensor are mounted on mobile robot and Complementary-filter is designed and implemented in order to compensate complementary drawback of each sensor and fuse their information. The experimental results show that the multisensor fusion system is more accurate than odometry only in estimation of the position and direction of mobile robot.

  • PDF

Simplified Nonlinear Control for Planar Motor based on Singular Perturbation Theory (특이섭동이론을 기반으로한 평판모터의 비선형 제어)

  • Seo, HyungDuk;Shin, Donghoon;Lee, Youngwoo;Chung, Chung Choo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.289-296
    • /
    • 2015
  • In this paper, we propose the nonlinear control based on singular perturbation theory for position tracking and yaw regulation of planar motor. Singular perturbation theory is characterized by the existence of slow and fast transients in the system dynamics. The proposed method consists of auxiliary control to decouple error dynamics. We develop model reduction with control input. Also, we derIve decoupled error dynamics with auxiliary input. The controller is designed in order to guarantee the desired position and yaw regulation without current feedback or estimation. Simulation results validate the effect of proposed method.

Failure Detection Filter for the Sensor and Actuator Failure in the Auto-Pilot System

  • Suh, Sang-Hyun
    • Journal of Hydrospace Technology
    • /
    • v.1 no.1
    • /
    • pp.75-88
    • /
    • 1995
  • Auto-Pilot System uses heading angle information via the position sensor and the rudder device to control the ship's direction. Most of the control logics are composed of the state estimation and control algorithms assuming that the measurement device and the actuator have no fault except the measurement noise. But such asumptions could bring the danger in real situation. For example, if the heading angle measuring device is out of order the control action based on those false position information could bring serious safety problem. In this study, the control system including improved method for processing the position information is applied to the Auto-Pilot System. To show the difference between general state estimator and F.D.F., BJDFs for the sensor and the actuator failure detection are designed and the performance are tested. And it is shown that bias error in sensor could be detected by state-augmented estimator. So the residual confined in the 2-dimension in the presence of the sensor failure could be unidirectional in output space and bias sensor error is much easier to be detected.

  • PDF

Development of Collision Detection Method Using Estimation of Cartesian Space Acceleration Disturbance (직교좌표계 가속도 외란 추정을 통한 충돌 감지 알고리즘 개발)

  • Jung, Byung-jin;Moon, Hyungpil
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.3
    • /
    • pp.258-262
    • /
    • 2017
  • In this paper, we propose a new collision detection algorithm for human-robot collaboration. We use an IMU sensor located at the tip of the manipulator and the kinematic behavior of the manipulator to detect the unexpected collision between the robotic manipulator and environment. Unlike other method, the developed algorithm uses only the kinematic relationship between the manipulator joint and the end effector. Therefore, the collision estimation signal is not affected by the error of the dynamics model. The proposed collision detection algorithm detects the collision by comparing the estimated acceleration of the end effector derived from the position, velocity and acceleration trajectories of the robot joints with the actual acceleration measured by the sensor. In simulation, we compare the performance of our method with the conventional Residual Observer (ROB). Our method is less sensitive to the load variation because of the independency on the dynamic modeling of the manipulator.