• Title/Summary/Keyword: Position Accuracy

Search Result 2,338, Processing Time 0.027 seconds

Performance analysis for Ground Position Accuracy Test of MLAT (MLAT 지상 위치정확도 시험에 대한 성능 분석)

  • Koo, Bon-soo;Jang, Jae-won;Kim, Woo-riul;Kim, Tae-sik
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.4
    • /
    • pp.325-331
    • /
    • 2017
  • As a GPS stability problem arises, MLAT system is spotlighted as an alternative technology of ADS-B. MLAT system has a high position accuracy as much as ADS-B. Also, MLAT receives the mode A,C,S, and 1090ES(ADS-B) signals from the mounted aircraft transponder. MLAT receives signals from several receiver units and calculates aircraft positions. MLAT has ADS-B level positioning accurarcy using GPS and can calculate the position information with objects independently. According to global environment changes, Local area multiltilateration(LAM) surveillance system is under development for moving vehicles and aircraft detection in airport. These are still under testing in Tae-an Airfield. In the paper, we analyzed the performance by comparing the calculated position data from MLAT to RTK. In order to confirm the position accuracy of MLAT and the deviation of position data between fixed target and moving target on the ground during the field test in Tae-an Airfield.

A Study on Improvement of Location Accuracy and Indoor location estimation system to minimize installation costs (실내 위치 추정 시스템의 설치비용 최소화와 위치 정확도 개선에 대한 연구)

  • Yeom, Jin-Young;Kang, Dong-Jo;Park, Hyun-Ju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.5
    • /
    • pp.1083-1094
    • /
    • 2012
  • Commercialized location estimation System with high accuracy is widely used for various services. However, if the systems aren't completely installed in an indoor, location estimation accuracy tend to be very poor. In this paper, indoor location estimation algorithm to improve the accuracy of object location, by correcting the location information obtained from a system that does not fully install, is proposed. In this paper, UWB-based Ubisense system that provides high position accuracy in an indoor environment was utilized. In conclusion, this paper was able to improve the positioning accuracy, by correcting that information about the location of the measured object in position estimation system.

The Evaluation of Position Accuracy to 1:1,000 and 1:5,000 scale Digital Map (1:1,000 및 1:5,000 수치지도의 위치정확도 검증)

  • Lee, Hyun-Jik;Park, Hong-Kee;Lee, Kang-Won
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.6 no.1 s.11
    • /
    • pp.117-128
    • /
    • 1998
  • National digital maps (NDM) produced by diverse production methods through various stages are ready to distribute to public. The position accuracy problems in NDM should be inspected and evaluated to guarantee the quality of NDM. The purpose of this study is 1) to find out factors of impeding accuracy by examining the position accuracy of NDM on scales of 1:1,000 and 1:5,000, 2) to form the technical basis of making accurate digital maps and 3) to increase reliability and practical use of NDM. In this study, we found out 1) obstacles of making accurate mM especially in solving horizontal and vertical location accuracy problems and 2) error sources in production methods as well as stages. These results can be contributed to increase accuracy on modifying and upgrading NDM.

  • PDF

Performance Analysis of Low-Order Surface Methods for Compact Network RTK: Case Study

  • Song, Junesol;Park, Byungwoon;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.1
    • /
    • pp.33-41
    • /
    • 2015
  • Compact Network Real-Time Kinematic (RTK) is a method that combines compact RTK and network RTK, and it can effectively reduce the time and spatial de-correlation errors. A network RTK user receives multiple correction information generated from reference stations that constitute a network, calculates correction information that is appropriate for one's own position through a proper combination method, and uses the information for the estimation of the position. This combination method is classified depending on the method for modeling the GPS error elements included in correction information, and the user position accuracy is affected by the accuracy of this modeling. Among the GPS error elements included in correction information, tropospheric delay is generally eliminated using a tropospheric model, and a combination method is then applied. In the case of a tropospheric model, the estimation accuracy varies depending on the meteorological condition, and thus eliminating the tropospheric delay of correction information using a tropospheric model is limited to a certain extent. In this study, correction information modeling accuracy performances were compared focusing on the Low-Order Surface Model (LSM), which models the GPS error elements included in correction information using a low-order surface, and a modified LSM method that considers tropospheric delay characteristics depending on altitude. Both of the two methods model GPS error elements in relation to altitude, but the second method reflects the characteristics of actual tropospheric delay depending on altitude. In this study, the final residual errors of user measurements were compared and analyzed using the correction information generated by the various methods mentioned above. For the performance comparison and analysis, various GPS actual measurement data were collected. The results indicated that the modified LSM method that considers actual tropospheric characteristics showed improved performance in terms of user measurement residual error and position domain residual error.

Effects of the Selection of Deformation-related Variables on Accuracy in Relative Position Estimation via Time-varying Segment-to-Joint Vectors (시변 분절-관절 벡터를 통한 상대위치 추정시 변형관련 변수의 선정이 추정 정확도에 미치는 영향)

  • Lee, Chang June;Lee, Jung Keun
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.156-162
    • /
    • 2022
  • This study estimates the relative position between body segments using segment orientation and segment-to-joint center (S2J) vectors. In many wearable motion tracking technologies, the S2J vector is treated as a constant based on the assumption that rigid body segments are connected by a mechanical ball joint. However, human body segments are deformable non-rigid bodies, and they are connected via ligaments and tendons; therefore, the S2J vector should be determined as a time-varying vector, instead of a constant. In this regard, our previous study (2021) proposed a method for determining the time-varying S2J vector from the learning dataset using a regression method. Because that method uses a deformation-related variable to consider the deformation of S2J vectors, the optimal variable must be determined in terms of estimation accuracy by motion and segment. In this study, we investigated the effects of deformation-related variables on the estimation accuracy of the relative position. The experimental results showed that the estimation accuracy was the highest when the flexion and adduction angles of the shoulder and the flexion angles of the shoulder and elbow were selected as deformation-related variables for the sternum-to-upper arm and upper arm-to-forearm, respectively. Furthermore, the case with multiple deformation-related variables was superior by an average of 2.19 mm compared to the case with a single variable.

Feasibility Study of Source Position Verification in HDR Brachytherapy Using Scintillating Fiber

  • Moon, Sun Young;Jeong, EunHee;Lim, Young Kyung;Chung, Weon Kyu;Huh, Hyun Do;Kim, Dong Wook;Yoon, Myonggeun
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.213-219
    • /
    • 2016
  • The position verification of the radiation source utilized in brachytherapy forms a critical factor in determining the therapeutic efficiency. Currently, films are used to verify the source position; however, this method is encumbered by the lengthy time interval required from film scanning to analysis, which makes real-time position verification difficult. In general, the source position accuracy is usually tested in a monthly quality assurance check. In this context, this study investigates the feasibility of the real-time position verification of the radiation source in high dose rate (HDR) brachytherapy with the use of scintillating fibers. To this end, we construct a system consisting of scintillating fibers and a silicon photomultiplier (SiPM), optimize the dosimetric software setup and radiation system characteristics to obtain maximum measurement accuracy, and determine the relative ratio of the measured signals dependent upon the position of the scintillating fiber. According to the dosimetric results based on a treatment plan, in which the dwell time is set at 30 and 60 s at two dwell positions, the number of signals is 31.5 and 83, respectively. In other words, the signal rate roughly doubles in proportion to the dwell time. The source position can also be confirmed at the same time. With further improvements in the spatial resolution and scintillating fiber array, the source position can be verified in real-time in clinical settings with the use of a scintillating fiber-based system.

An Efficient Localization Algorithm for Mobile Robots in RFID Sensor Space (모바일 로봇을 위한 RFID 센서공간에서 효율적인 위치인식 알고리즘)

  • Lim, Hyung-Soo;Choi, Sung-Yug;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.10
    • /
    • pp.949-955
    • /
    • 2007
  • This paper proposes an efficient localization algorithm in the RFID sensor space for the precise localization of a mobile robot. The RFID sensor space consists of embedded sensors and a mobile robot. The embedded sensors, that is tags are holding the absolute position data and provide them to the robot which carries a reader and requests the absolute position fur localization. The reader, it is called as antenna usually, gets several tag data at the same time within its readable range. It takes time to read all the tags and to process the data to estimate the position, which is a major factor to deteriorate the localization accuracy. In this paper, an efficient algorithm to estimate the position and orientation of the mobile robot as quickly as possible has been proposed. Along with the algorithm, a new allocation of the tags in the RFID sensor space is also proposed to improve the localization accuracy. The proposed algorithms are demonstrated and verified through the real experiments.

Detecting Lane Departure Based on GIS Using DGPS (DGPS를 이용한 GIS기반의 차선 이탈 검지 연구)

  • Moon, Sang-Chan;Lee, Soon-Geul;Kim, Jae-Jun;Kim, Byoung-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.16-24
    • /
    • 2012
  • This paper proposes a method utilizing Differential Global Position System (DGPS) with Real-Time Kinematic (RTK) and pre-built Geo-graphic Information System (GIS) to detect lane departure of a vehicle. The position of a vehicle measured by DGPS with RTK has 18 cm-level accuracy. The preconditioned GIS data giving accurate position information of the traffic lanes is used to set up coordinate system and to enable fast calculation of the relative position of the vehicle within the traffic lanes. This relative position can be used for safe driving by preventing the vehicle from departing lane carelessly. The proposed system can be a key component in functions such as vehicle guidance, driver alert and assistance, and the smart highway that eventually enables autonomous driving supporting system. Experimental results show the ability of the system to meet the accuracy and robustness to detect lane departure of a vehicle at high speed.

Tool Deflection and Geometric Accuracy to the Change of Inclination Position Angle during Machining Sculptured Surface (곡면가공시 경사위치각 변화에 따른 공구변형과 형상정밀도)

  • 왕덕현;박희철
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.4
    • /
    • pp.55-64
    • /
    • 2001
  • In this study, hemisphere and cylindrical shapes were machined for different tool paths and machining conditions with ball endmill cutters. Tool deflection, cutting forces and shape accuracy were measured according to the inclination position of the sculptured surface. As the decreasing of inclination position angle, the tool deflection was increased due to the decreased cutting speed when the cutting edge is approaching toward the center. Tool deflection when upward cutting is obtained less than that of downward cutting and down-milling in upward cutting showed the least tool deflection for the sculptured surface. Roundness values were found in least roundness error when down-milling in upward cutting. It is obtained the very little difference between 90。and 45。 of inclination position angle. The best surface roughness value was obtained in upward up-milling and showed different tendency with tool deflection and cutting force. For down-milling, the cutting resistance of the side wall direction is larger than that of feed direction. Therefore, this phenomenon which is received over cutting resistance can be caused of chatter.

  • PDF

Reduction of GPS Latency Using RTK GPS/GNSS Correction and Map Matching in a Car NavigationSystem

  • Kim, Hyo Joong;Lee, Won Hee;Yu, Ki Yun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.2
    • /
    • pp.37-46
    • /
    • 2016
  • The difference between definition time of GPS (Global Positioning System) position data and actual display time of car positions on a map could reduce the accuracy of car positions displayed in PND (Portable Navigation Device)-type CNS (Car Navigation System). Due to the time difference, the position of the car displayed on the map is not its current position, so an improved method to fix these problems is required. It is expected that a method that uses predicted future positionsto compensate for the delay caused by processing and display of the received GPS signals could mitigate these problems. Therefore, in this study an analysis was conducted to correct late processing problems of map positions by mapmatching using a Kalman filter with only GPS position data and a RRF (Road Reduction Filter) technique in a light-weight CNS. The effects on routing services are examined by analyzing differences that are decomposed into along and across the road elements relative to the direction of advancing car. The results indicate that it is possible to improve the positional accuracy in the along-the-road direction of a light-weight CNS device that uses only GPS position data, by applying a Kalman filter and RRF.