• 제목/요약/키워드: Position/Velocity Control

검색결과 647건 처리시간 0.029초

차압식 벤튜리콘 유량계에 대한 유동해석 (Numerical analysis of the differential pressure venturi-cone flowmeter)

  • 윤준용;맹주성;이정원
    • 설비공학논문집
    • /
    • 제10권6호
    • /
    • pp.714-720
    • /
    • 1998
  • The differential pressure venturi-cone flowmeter is an advanced flowmeter which has many advantages such as wide range of measurement, high accuracy, excellent flow turn-down ratio, low headless, short installation pipe length requirement, and etc. Like other differential pressure flowmeters, the venturi-cone flowmeter uses the law of energy conservation, but its shape and position make it perform better than others. The cone acts as its own flow conditioner and mixer, fully conditioning and mixing the flow prior to measurement. For the analysis, we used Reynolds-averaged Wavier-Stokes equations and k-$\omega$ turbulence model. The equations were fully transformed into the computational domain, the pressure-velocity coupling was made through SIMPLER algorithm, and the equations were discretized using finite analytic solutions of the liberalized equations(Finite Analytic Method). To control the separation phenomenon on the cone surface, we proposed a new shape of cone, and analyzed the flowfield in the new flowmeter system, and found the improvement on the performance of the new cone flowmeter.

  • PDF

SenSation : A New Translational 2 DOF Haptic Device with Parallel Mechanism

  • Chung, Young-Hoon;Lee, Jae-Won
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권4호
    • /
    • pp.217-222
    • /
    • 2001
  • We propose a new two-degree of freedom parallel mechanism for a haptic device and will refer to the mechanism as the SenSation. The SenSation is designed in order to improve the kinematic performanced and to achieve static balance. We use the panto graph mechanisms in order to change the location of active joints, which leads to transform a direct kinematic singularity into a nonsingularity. The direct kinematic singular configurations of the SenSation occur near the workspace boundary. Using the property that position vector of rigid body rotating about a fixed point is normal to the velocity vector, Jacobian matrix is derived. Using the vector method, two different types of singularities of the SenSation can be identified and we discuss the physical significance of each of the three types of singularities. We will compare the kinematic performances(force manipulability ellipsoid, kinematic isotropy) of the SenSation with those of five-var parallel mechanism. By specifying that the potential energy be fixed, the conditions for the static balancing of the SenSation is derived. The static balancing is accomplished by changing the center of mass of the links.

  • PDF

Pre-Sliding Friction Control Using the Sliding Mode Controller with Hysteresis Friction Compensator

  • Choi, Jeong Ju;Kim, Jong Shik;Han, Seong Ik
    • Journal of Mechanical Science and Technology
    • /
    • 제18권10호
    • /
    • pp.1755-1762
    • /
    • 2004
  • Friction phenomenon can be described as two parts, which are the pre-sliding and sliding regions. In the motion of the sliding region, the friction force depends on the velocity of the system and consists of the Coulomb, stick-slip, Streibeck effect and viscous frictions. The friction force in the pre-sliding region, which occurs before the breakaway, depends on the position of the system. In the case of the motion of the friction in the sliding region, the LuGre model describes well the friction phenomenon and is used widely to identify the friction model, but the motion of the friction in the pre-sliding such as hysteresis phenomenon cannot be expressed well. In this paper, a modified friction model for the motion of the friction in the pre-sliding region is suggested which can consider the hysteresis phenomenon as the Preisach model. In order to show the effectiveness of the proposed friction model, the sliding mode controller (SMC) with hysteresis friction compensator is synthesized for a ball-screw servo system.

고정익 항공기의 자율 곡예비행 (Autonomous Aerobatic Flight for Fixed Wing Aircraft)

  • 박상혁
    • 한국항공우주학회지
    • /
    • 제37권12호
    • /
    • pp.1217-1224
    • /
    • 2009
  • 고정익 항공기가 3차원의 복잡한 경로를 추종하기 위해 필요한 비교적 간단하며 효과적인 유도 제어 방법을 제시한다. 소개되는 방법은 비선형 경로 추종 유도 기법을 외부 루프로 사용한다. 외부 루프는 원하는 경로와 함께 항공기의 현재 위치와 속도를 바탕으로 비행 경로를 변화하기 위한 가속도 명령을 생성한다. 가속도 명령은 중력과 벡터적으로 결합되어 Specific Force Acceleration을 만든다. 이렇게 생성된 Specific Force Acceleration은 내부 루프를 위한 명령으로 쓰이는데, 이는 항공기가 가속도 자체보다는 Specific Force Acceleration을 더 직접적으로 제어할 수 있기 때문이다. 나아가 배면 비행이나 Slow Roll, Knife-Edge 등과 같은 옆미끄럼짐 기동을 하기 위해 필요한 롤 자세 제어 기법도 제시한다. 마지막으로 표준이 되는 여러 가지 곡예비행 경로들에 대한 시뮬레이션을 수행함으로써 제시된 기법의 성능을 검증한다.

Modeling and Simulation for PIG with Bypass Flow Control in Natural Gas Pipeline

  • Nguyen, Tan-Tien;Kim, Sang-Bong;Yoo, Hui-Ryong;Park, Yong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • 제15권9호
    • /
    • pp.1302-1310
    • /
    • 2001
  • This paper introduces modeling and simulation results for pipeline inspection gauge (PIG) with bypass flow control in natural gas pipeline. The dynamic behaviour of the PIG depends on the different pressure across its body and the bypass flow through it. The system dynamics includes: dynamics of driving gas flow behind the PIG, dynamics of expelled gas in front of the PIG, dynamics of bypass flow, and dynamics of the PIG. The bypass flow across the PIG is treated as incompressible flow with the assumption of its Mach number smaller than 0.45. The governing nonlinear hyperbolic partial differential equations for unsteady gas flows are solved by method of characteristics (MOC) with the regular rectangular grid under appropriate initial and boundary conditions. The Runge-Kuta method is used for solving the steady flow equations to get initial flow values and the dynamic equation of the PIG. The sampling time and distance are chosen under Courant-Friedrich-Lewy (CFL) restriction. The simulation is performed with a pipeline segment in the Korea Gas Corporation (KOGAS) low pressure system, Ueijungboo-Sangye line. Simulation results show us that the derived mathematical model and the proposed computational scheme are effective for estimating the position and velocity of the PIG with bypass flow under given operational conditions of pipeline.

  • PDF

복합화력 탈질설비 성능향상을 위한 암모니아 주입 그리드의 최적설계 방안에 관한 연구 (A Study for Optimal Design of the AIG to Improve the Performance of DeNOx Facilities Installed in Combined Cycle Plant)

  • 김광추;박만흥;윤준규;임종한
    • 설비공학논문집
    • /
    • 제19권12호
    • /
    • pp.811-820
    • /
    • 2007
  • A Study on the optimal design of the AIG(Ammonia Injection Grid) to improve the performance of DeNOx facilities in the HRSG(Heat Recovery Steam Generator) was performed using the CFD analysis. On the basis of the flow analysis results in the case that the AIG in the HRSG was not installed, the numerical analyses according to the positions of AIG, injection angles of nozzle and the control of ammonia injection quantity were carried out. The standard deviation according to factors was calculated for quantitative comparison. As the results, the AIG in the HRSG should be installed in the position that the uniform flow field shows through the exact flow analysis in the previous of the AIG design and installation. In the case the AIG has already been installed and non uniform flow distribution shows, it is recommended that flow correction device or KoNOx catalyst should be used. Otherwise, the control of ammonia injection angle or the ammonia injection quantity using the velocity profile analysis is demanded to accomplish the optimal performance.

2자유도 승마로봇 제어를 위한 동작특성분석 (Motion analysis for control of a 2-DOF horse riding robot)

  • 서동진;전세웅;김영욱;고낙용
    • 로봇학회논문지
    • /
    • 제6권3호
    • /
    • pp.263-273
    • /
    • 2011
  • This paper analyzes the motion of a horseback riding robot which has two actuators and three joints. It is impossible to control the saddle to get to any position and orientation using the two motors because the robot has less degrees of freedom than the number of joints. Therefore it is required to know the possible location and orientation along with the velocity characteristics of each pose prior to motion planning. For this purpose, this paper analyzes the characteristics of the robot motion. The authors derive the forward and inverse kinematics of the robot motion and developed the trajectory editor for motion planning. Also, Jacobian of the robot is analyzed. It reveals that one of the actuator has little influence to the speed of the saddle motion while the other affects the speed of the saddle motion dominantly. The approach of the paper can be applied for the analysis of characteristics of a robot which has less number of actuators than that of joints.

미지 입력을 가진 기계 시스템을 위한 비선형 관측기 설계 (Design of a Nonlinear Observer for Mechanical Systems with Unknown Inputs)

  • 송봉섭;이지민
    • 제어로봇시스템학회논문지
    • /
    • 제22권6호
    • /
    • pp.411-416
    • /
    • 2016
  • This paper presents the design methodology of an unknown input observer for Lipschitz nonlinear systems with unknown inputs in the framework of convex optimization. We use an unknown input observer (UIO) to consider both nonlinearity and disturbance. By deriving a sufficient condition for exponential stability in the linear matrix inequality (LMI) form, existence of a stabilizing observer gain matrix of UIO will be assured by checking whether the quadratic stability margin of the error dynamics is greater than the Lipschitz constant or not. If quadratic stability margin is less than a Lipschitz constant, the coordinate transformation may be used to reduce the Lipschitz constant in the new coordinates. Furthermore, to reduce the maximum singular value of the observer gain matrix elements, an object function to minimize it will be optimally designed by modifying its magnitude so that amplification of sensor measurement noise is minimized via multi-objective optimization algorithm. The performance of UIO is compared to a nonlinear observer (Luenberger-like) with an application to a flexible joint robot system considering a change of load and disturbance. Finally, it is validated via simulations that the estimated angular position and velocity provide true values even in the presence of unknown inputs.

광역에서의 다중로봇 위치인식 기법 (Localization of Multiple Robots in a Wide Area)

  • 양태경;최원연;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제16권3호
    • /
    • pp.293-299
    • /
    • 2010
  • The multiple block localization method in a wide area for multiple robots using iGS is proposed in this paper. The iGS is developed for the indoor global localization using ultrasonic and RF sensors. To measure the distance between a mobile robot and a beacon, the tag on the mobile robot wakes up one beacon to send out the ultrasonic signal and measures the traveling time from the beacon to the mobile robot. As the number of robots is increased, the sampling time of localization also becomes longer. Note that only one robot can localize its own position calling beacons one by one during each of the sampling interval. This is a severe constraint for the localization of multiple robots in a wide area. This paper proposes an efficient localization algorithm for the multiple robots in a wide area which can be divided into multiple blocks. For a given block, a master beacon is designated to synchronize robots. By the access of the synchronization signal, each beacon in the selected group sends out an ultrasonic signal. When the robots in the block receive the ultrasonic signal, they can calculate their own locations based on the distances to the beacons, which are obtained by the multiplication of flight time and velocity of the ultrasonic signal. The efficiency of the algorithm is verified through the real experiments.

공동주택 화장실의 기계 환기시스템에 관한 연구 (A Study on the Mechanical Ventilation System of Bathroom in Apartment House)

  • 함진식
    • 한국주거학회논문집
    • /
    • 제12권3호
    • /
    • pp.141-148
    • /
    • 2001
  • To design mechanical ventilation for bathroom of apartment houses where air supply and exhaust are taken into consideration, mock-ups of ventilation systems, widely used in bathroom of apartment houses with an area of 100$\textrm{m}^2$, were made and installed in a laboratory. These ventilation mock-ups were available for control of air supply and exhaust, and the sizes of supply openings were 40cm${\times}$1cm, 40cm${\times}$3cm, and 40cm${\times}$5cm. They were installed at five positions, spaced 45cm at a height of 5cm from the floor. The exhaust fan was designed for its operating voltage to be set to five steps(100V, 130V, 150V, 180V and 220V) in order to control its air flow rates. When the size and position of each supply opening were changed with the wind velocity of the exhaust fan set to the step 5, the ventilation rates were measured and analyzed by the concentration decay method of tracer gas method, in order to present an efficient mechanical ventilation system. The results of the study revealed that the ventilations rates would increase in the presence of supply openings, compared to the absence of supply openings, and that the larger the size of the supply opening, the more the ventilation rates. Therefore, it was found necessary to take air supply into consideration.

  • PDF