• 제목/요약/키워드: Position/Force Control

검색결과 700건 처리시간 0.031초

퍼지 논리 제어기를 사용한 축방향지지력 제어 (Suspending Force Control of 12/14 BLSRM Using Fuzzy Logic Controller)

  • 하잉걸;;안진우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.845-847
    • /
    • 2015
  • A suspending force control based on fuzzy logic control is proposed to apply on a novel hybrid bearingless switched reluctance motor(BLSRM) which has separated torque and suspending force pole. Due to the unique structure, the suspending force control system can be easily decoupled from torque control system. In this paper, two fuzzy controller targeted at x-axis direction and y-axis direction are adopted to maintain the shaft at center position, which is very necessary for stable operation of BLSRM. By replacing the traditional PI block with modified fuzzy logic controller, the suspending system can behave a good performance, and the proposed scheme can be verified by simulation results.

  • PDF

신경회로망을 이용한 로봇 매니퓰레이터의 힘 제어에 관한 연구 (A Study on the Force Control of a Robot Manipulator Using Neural Networks)

  • 황용연
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제21권4호
    • /
    • pp.404-413
    • /
    • 1997
  • Direct-drive robots are suitable to position and force control with high accuracy, but it is difficult to design a controller which gives satisfactory perfonnance because of the system's nonlinearity and link-interactions. This paper is concerned with the force control of direct-drive robots. The pro¬posed algorithm consists of feedback controllers and a neural network. Mter the completion of learning, the outputs of feedback controllers are nearly equal to zero, and the neural network con¬troller plays an important role in the control system. Therefore, the optimum adjustment of parameters of feedback controllers is unnecessary. In other words, the proposed algorithm does not need any knowledge of the controlled system in advance. The effectiveness of the proposed algo¬rithm is demonstrated by the experiment on the force control of a parallelogram link-type direct¬drive robot.

  • PDF

2상 8극 HB형 리니어 펄스 모터의 정밀위치 제어를 위한 미세스텝 구동 (Microstep Drive of 2 Phase 8 Pole HB Type Linear Pulse Motor for Precise Position Control)

  • 김성헌;이은웅;이동주;구태만
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권12호
    • /
    • pp.671-678
    • /
    • 1999
  • In this study, it has been aimed that the accuracy of position control be increased by microstep drive to the 2 phase 8 pole HB type prototype of linear pulse motor of which winding are applied sine wave current and the vibration and noise in the lower speed region be decreased. The fixed off-time method which controls the exciting current bandwidth, was applied to the microstep current controller. When the LPM was driven 1/8 microstep its accuracy of position was 0.109[mm] (=tooth pitch 3.5[mm] ). Also, the elimination method of harmonics in the static thrust force is proposed. It was confirmed that the position error range of the prototype LPM was $\pm$0.2[mm].

  • PDF

로봇 매니퓰레이터와 공작물의 상대운동에 의한 위치/힘의 2차원 하이브리드 제어 (Two dimensional hybrid control using the relative motion between the robot manipulator and a workpiece)

  • 진상호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1577-1580
    • /
    • 1997
  • A hybrid control method based on using the relative motion between a manipulator and a workpiece is described for a two-dimensional manipulator, in which it is assumed that there are no collisions between the robot manipulator and the workpiece, and that we use a computed force law which is similar to the computed torque law in the trajectory tracking problem of a robot manipulator. The effectiveness of the proposed hybrid control emthod is illustratec by some simulations.

  • PDF

3차원 접촉면의 인식 및 위치의 결정의 위한 광촉각센서와 역각센서의 다중센서시스템 (Multisensor System Integrating Optical Tactile and F/T Sensors for Determination of Type and Position of 3D Contact Surface)

  • 한헌수
    • 전자공학회논문지B
    • /
    • 제33B권2호
    • /
    • pp.10-19
    • /
    • 1996
  • This paper presents a finger-shaped multisensor system which can measure the tyep and position of a target surface by contactl. The multi-sensor system consists of a sphere-shpaed optical tactile sensor located at the finger tip and a force/torque sensor located at the joint of a finger. The optial tactile sensor determines the type and position of the target surface using the shape and position of the CCD image of the touching area generated by a contact between the sensor and the taget surface. The force/torque sensor also determines the position and surface normal vector by applying the distributionof forces and torques t the contact point to the equations of finger shape. The measurements on the position and surface normal vector at a contact point obtined by two individual sensors are fused using a statistical method. The integrated sensor system has 0.8mm error in position measurement and 1.31$^{\circ}$ error in normal vector measurement. The developed sensor system has many applications, such as autonomous compliance control, automatic grasping and recognition, etc.

  • PDF

Automation of a Teleoperated Microassembly Desktop Station Supervised by Virtual Reality

  • Antoine Ferreira;Fontaine, Jean-Guy;Shigeoki Hirai
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권1호
    • /
    • pp.23-31
    • /
    • 2002
  • We proposed a concept of a desktop micro device factory for visually servoed teleoperated microassembly assisted by a virtual reality (VR) interface. It is composed of two micromanipulators equipped with micro tools operating under a light microscope. First a manipulator, control method for the micro object to follow a planned trajectory in pushing operation is proposed undo. vision based-position control. Then, we present the cooperation control strategy of the micro handling operation under vision-based force control integrating a sensor fusion framework approach. A guiding-system based on virtual micro-world exactly reconstructed from the CAD-CAM databases of the real environment being considered is presented for the imprecisely calibrated micro world. Finally, some experimental results of microassembly tasks performed on millimeter-sized components are provided.

상지 재활을 위한 3-D 로봇 시스템의 혼합 위치/힘 제어 (Hybrid Position/Force Control of a 3-D Rehabilitation Robot System for Upper Extremities)

  • 이수한;신규현
    • 한국정밀공학회지
    • /
    • 제28권5호
    • /
    • pp.599-605
    • /
    • 2011
  • A 3-D rehabilitation robot system is developed. The robot system is for the rehabilitation of upper extremities, especially the shoulder and elbow joints, and has 3-D workspace for occupational therapy to recover physical functions in activities of daily living(ADL). The rehabilitation robot system has 1 DOF in horizontal rotational motion and 2 DOF in vertical rotational motion, where all actuators are set on the ground. Parallelogram linkage mechanisms lower the equivalent inertia of the control elements as well as control forces. Also the mechanisms have high mechanical rigidity for the end effector and the handle. In this paper, a hybrid position/force controller is used for controlling positions and forces simultaneously The controller is tuned according to the robot posture. The active motion modes for rehabilitation program consist of active-resisted motion mode and active-free motion mode. The results of the experiments show that the proposed motion modes provide the intended forces effectively.

힘/토크 센서를 이용한 수술보조로봇의 원격중심운동 직접교시 알고리즘 연구 (Study on Direct Teaching Algorithm for Remote Center Motion of Surgical Assistant Robot using Force/Torque Sensor)

  • 김민효;진상록
    • 로봇학회논문지
    • /
    • 제15권4호
    • /
    • pp.309-315
    • /
    • 2020
  • This study shows a control strategy that acquires both precision and manipulation sensitivity of remote center motion with manual traction for a surgical assistant robot. Remote center motion is an essential function of a laparoscopic surgical robot. The robot has to keep the position of the insertion port in a three-dimensional space, and general laparoscopic surgery needs 4-DoF (degree-of-freedom) motions such as pan, tilt, spin, and forward/backward. The proposed robot consists of a 6-axis collaborative robot and a 2-DoF end-effector. A 6-axis collaborative robot performs the cone-shaped trajectory with pan and tilt motion of an end-effector maintaining the position of remote center. An end-effector deals with the remaining 2-DoF movement. The most intuitive way a surgeon manipulates a robot is through direct teaching. Since the accuracy of maintaining the remote center position is important, direct teaching is implemented based on position control in this study. A force/torque sensor which is attached to between robot and end-effector estimates the surgeon's intention and generates the command of motion. The predefined remote center position and the pan and tilt angles generated from direct teaching are input as a command for position control. The command generation algorithm determines the direct teaching sensitivity. Required torque for direct teaching and accuracy of remote center motion are analyzed by experiments of panning and tilting motion.

제어입력 포화를 가지는 원격조작기의 힘반영 제어 (A Force Reflecting Control for Telemanipulators with Control Input Saturation)

  • 안성호;윤지섭;이상정
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권10호
    • /
    • pp.572-581
    • /
    • 2000
  • When the manipulator consisting of high ratio gear reducers at its joints is used as the slave manipulator in teleoperated systems, its dynamic characteristics is much slower than that of the master manipulator and it is likely to encounter the saturation in the input magnitude. The control input saturation generates an windup phenomenon that the system stability and position tracking performance of the slave manipulator are to be deteriorated. This paper proposes an force reflecting control scheme and its design method which compensates the control input saturation with absolute stability. The proposed scheme is shown to give a stable force reflection while compensating for control input saturation effectively.

  • PDF

로봇의 디버링 작업이나 표면 광택작업을 위한 새로운 힘제어 기술 개발 (New Robbt Force Control Technique for Deburring and Polishing Process)

  • 정슬
    • 제어로봇시스템학회논문지
    • /
    • 제6권9호
    • /
    • pp.786-795
    • /
    • 2000
  • In this paper, a new impedance force control method for deburring and polishing process is proposed. The proposed method is robust to deal with unknown environment stiffness as unknown well as environment location. An adaptive technique is used to minimize the force error occurred due to unknown environment surface profile. A robust position control algorithm based on time-delayed information is used to cancel out uncertainties in robot dynamics. A three link robot manipulator is used to demonstrate performances of the proposed control on deburring and polishing tasks. Stability analysis for the adaptive control is presented and its results are confirmed by simulations.

  • PDF