애니메이션에서 포즈는 타이밍, 스페이싱과 더불어 중요한 요소라고 말할 수 있다. 포즈는 애니메이션 동작의 스토리텔링이나 상황을 설명하는 중요한 역할을 한다. 애니메이팅 방식은 스트레이트 어헤드 (Straight ahead action) 와 포즈 투 포즈 (Pose to pose) 방식이 있고, 애니메이션 작업자들은 이 두 방식을 사용하거나 두 가지 방식을 혼용해서 사용하고 있다. 컴퓨터 애니메이션은 키 프레임 사이에 보간법을 이용해 포즈 사이에 인비트윈(inbetween) 동작들을 생성하도록 하고 있고, 컴퓨터 애니메이션 작업자들은 포즈 투 포즈 방식의 작업을 많이 쓰고 있다. 애니메이션에서 어떤 하나의 스토리나 상황을 표현하기 위해서 강력하고 좋은 포즈들을 만들어 내느냐 마느냐가 전체 애니메이션 동작의 질을 좌우한다고 볼 수 있다. 또한 이것은 관객들이 애니메이션을 잘 이해 할 수 있는지 없는지, 작업자에겐 능률적인 혹은 비효율적인 작업이 되게 하는 열쇠이다. 이 논문에서는 효과적이고 좋은 포즈를 잡아내는 데에 있어서 4가지 방법을 제시하고자 한다. 4가지의 포즈 선별 방법은 스트레치와 스쿼시의 포즈, 캐릭터의 발 혹은 사물의 높낮이 결정을 통한 포즈, 무게 중심을 고려한 포즈, 캐릭터의 경우 스텝을 밟을 때의 포즈들이다. 이 방법은 디즈니의 애니메이션의 12가지 법칙을 최대한 응용 했고 컴퓨터 애니메이션의 작업 방식에 특징을 고려한 방법이다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권4호
/
pp.2042-2059
/
2019
Digital shadow puppet has traditionally relied on expensive motion capture equipments and complex design. In this paper, a low-cost driven technique is presented, that captures human pose estimation data with simple camera from real scenarios, and use them to drive virtual Chinese shadow play in a 2.5D scene. We propose a special method for extracting human pose data for driving virtual Chinese shadow play, which is called 2.5D human pose estimation. Firstly, we use the 3D human pose estimation method to obtain the initial data. In the process of the following transformation, we treat the depth feature as an implicit feature, and map body joints to the range of constraints. We call the obtain pose data as 2.5D pose data. However, the 2.5D pose data can not better control the shadow puppet directly, due to the difference in motion pattern and composition structure between real pose and shadow puppet. To this end, the 2.5D pose data transformation is carried out in the implicit pose mapping space based on self-network and the final 2.5D pose expression data is produced for animating shadow puppets. Experimental results have demonstrated the effectiveness of our new method.
Pose variation is a critical problem in face recognition. Three-dimensional(3D) face recognition techniques have been proposed, as 3D data contains depth information that may allow problems of pose variation to be handled more effectively than with 2D face recognition methods. This paper proposes a pose-normalized 3D face modeling method that translates and rotates any pose angle to a frontal pose using a plane fitting method by Singular Value Decomposition(SVD). First, we reconstruct 3D face data with stereo vision method. Second, nose peak point is estimated by depth information and then the angle of pose is estimated by a facial plane fitting algorithm using four facial features. Next, using the estimated pose angle, the 3D face is translated and rotated to a frontal pose. To demonstrate the effectiveness of the proposed method, we designed 2D and 3D face recognition experiments. The experimental results show that the performance of the normalized 3D face recognition method is superior to that of an un-normalized 3D face recognition method for overcoming the problems of pose variation.
본 연구에서는 윈도우즈 PC용 연속동작 감지 카메라, Xtion을 이용한 PC-윈도우 플랫폼 기반의 연속동작 녹화 및 매칭방법의 개발 내용을 소개한다. 해당 방법을 개발하기 위해 카메라를 통해 얻은 깊이 정보, RGB 화상 정보, 뼈대 정보를 가공하고 비교하는 API를 먼저 개발하였다. 유효관절만을 선택적으로 비교하는 pose 비교 방법이 개발되었으며, 연속동작 비교에서는 pose 사이에 다른 틀린 pose가 섞여도 인식할 수 있는 방법이 개발되었다. 특정 pose나 연속동작 검출을 위해 샘플 데이터를 기록하고 테스트할 수 있는 도구가 개발되었다. 6종류의 다른 pose 및 연속동작을 촬영하고 테스트한 결과, pose는 100%의 인식성공과 연속동작은 99%의 인식성공이 이루어져 개발된 방법의 유용성을 검증할 수 있었다.
연구목적: 본 연구는 지하공동구 내 다수 작업자의 낙상을 자동으로 판별하기 위한 Top-down 방식의 딥러닝 자세 추정 모델 기반 낙상 검출 모델을 제안하고, 제안 모델의 성능을 평가한다. 연구방법: Top-down 방식의 자세 추정모델 중 하나인 YOLOv8-pose로부터 추론된 결과와 낙상 판별 규칙을 결합한 모델을 제시하고, 지하공동구 내 2인 이하 작업자가 출현한 기립 및 낙상 이미지에 대해 모델 성능지표를 평가하였다. 또한 동일한 방법으로 Bottom-up 방식 자세추정모델(OpenPose)을 적용한 결과를 함께 분석하였다. 두 모델의 낙상 검출 결과는 각 딥러닝 모델의 작업자 인식 성능에 의존적이므로, 작업자 쓰러짐과 함께 작업자 존재 여부에 대한 성능지표도 함께 조사하였다. 연구결과: YOLOv8-pose와 OpenPose의 모델의 작업자 인식 성능은 F1-score 기준으로 각각 0.88, 0.71로 두 모델이 유사한 수준이었으나, 낙상 규칙을 적용함에 따라 0.71, 0.23로 저하되었다. 작업자의 신체 일부만 검출되거나 작업자간 구분을 실패하여, OpenPose 기반 낙상 추론 모델의 성능 저하를 야기한 것으로 분석된다. 결론: Top-down 방식의 딥러닝 자세 추정 모델을 사용하는 것이 신체 관절점 인식 및 개별 작업자 구분 측면에서 지하공동구 내 작업자 낙상 검출에 효과적이라 판단된다.
본 논문에서는 Yolo-pose를 이용하여 장단기 메모리(Long short-term Memory)에 적용하는 시스템을 소개한다. 영상데이터로부터 Yolo-pose를 이용하여 일상생활과 낙상으로 구분된 데이터를 추출하여 LSTM에 적용하여 학습시킨다. 학습은 오버피팅을 방지하기 위하여 8대2의 Validation을 진행하며 Confusion matrix로 나타낸다. Yolo-pose의 결과값은 sensitivity와 specificity 모두 100%를 기록하여 일상생활과 낙상을 잘 구분하는 것을 확인 하였다.
This study examines how a model's pose that signals power influences consumers' recall ability of price information in advertisements. To extend prior findings on social judgments, we suggest that the direction of consumers' gaze and willingness to pay attention to the model vary depending on the model's pose. Study 1 explores how consumers' perception of the power of the model affects their price recall ability. In particular, consumers demonstrate better price recall for items displayed at the bottom of the ad when the model adopts a powerful pose and items displayed at the top when the model in the ad assumes a submissive pose. Study 2 investigates the influence of the perceived power of a model's pose on price recall depending on the visibility of the model's face and reveals that consumers demonstrate better price recall for items displayed at the top when the model's face is not visible even when the model adopts a powerful pose. Ultimately, this research provides new insights to help marketers identify ideal locations for displaying price information in ads. More theoretical and practical implications are also discussed.
본 논문은 Active Appearance Model(AAM)을 사용하여 주어진 얼굴영상의 포즈추정과 임의 포즈합성 방법을 설명한다. AAM은 다양한 응용분야에 성공적으로 적용되어지고 있는 예제기반 학습모델로 예제들의 변화정도를 학습한다. 그러나 하나의 모델로는 각도 변화가 큰 포즈 변화량을 수용하기 어렵다. 본 논문은 좁은 범위의 각도 변화를 다루는 모델을 포즈별로 생성한다. 주어진 포즈 얼굴을 다룰 수 있는 모델을 이용하여 정확한 포즈추정과 합성이 가능하다. 이때 합성하고자 하는 포즈의 각도가 포즈 추정을 위해 사용된 모델에 학습되어 있지 않은 경우, 미리 학습된 모델간의 선형관계를 통해 문제를 해결한다. Yale B 공개 얼굴 데이터베이스에 대한 실험을 통해 포즈추정 및 합성 정확도를 보이고, 자체 수집한 포즈변화가 큰 얼굴영상에 대한 성공적인 정면 합성 결과를 제시한다.
인간의 동작 인식에 대한 이전 연구는 주로 관절체로 표현된 신체 움직임을 추적하고 분류하는데 초점을 맞춰 왔다. 이 방식들은 실제 이미지 사용 환경에서 신체 부위에 대한 정확한 분류가 필요하다는 점이 까다롭기 때문에 최근의 동작 인식 연구 동향은 시공간상의 관심 점과 같이 저수준의, 더 추상적인 외형특징을 이용하는 방식이 일반화되었다. 하지만 몇 년 사이 자세 예측 기술이 발전하면서 자세 기반 방식에 대한 시각을 재정립하는 것이 필요하다. 본 연구는 외형 기반 방식에서 저수준의 외형특징만으로 분류기를 학습시키는 것이 충분한지에 대한 문제를 제기하면서 자세 예측을 이용한 효과적인 자세기반 동작인식 방식을 제안하였다. 이를 위해 다양한 감정을 표현하는 동작 시나리오를 대상으로 외형 기반, 자세 기반 특징 및 두 가지 특징을 조합한 방식을 비교하였다. 실험 결과, 자세 예측을 이용한 자세 기반 방식이 저수준의 외형특징을 이용한 방식보다 감정 동작 분류 및 인식 성능이 더 나았으며 잡음 때문에 심하게 망가진 이미지의 감정 동작 인식에도 자세 예측을 이용한 자세기반의 방식이 효과적이었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제17권2호
/
pp.559-575
/
2023
3D human pose estimation is widely applied in various fields, including action recognition, sports analysis, and human-computer interaction. 3D human pose estimation has achieved significant progress with the introduction of convolutional neural network (CNN). Recently, several researches have proposed the use of multiview approaches to avoid occlusions in single-view approaches. However, as the number of cameras increases, a 3D pose estimation system relying on a CNN may lack in computational resources. In addition, when a single host system uses multiple cameras, the data transition speed becomes inadequate owing to bandwidth limitations. To address this problem, we propose a distributed real-time 3D pose estimation framework based on asynchronous multiple cameras. The proposed framework comprises a central server and multiple edge devices. Each multiple-edge device estimates a 2D human pose from its view and sendsit to the central server. Subsequently, the central server synchronizes the received 2D human pose data based on the timestamps. Finally, the central server reconstructs a 3D human pose using geometrical triangulation. We demonstrate that the proposed framework increases the percentage of detected joints and successfully estimates 3D human poses in real-time.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.