• 제목/요약/키워드: Portable power application

검색결과 80건 처리시간 0.03초

지하철 시스템에 대한 RF-ID의 적용 (Application of RF-ID in Subway System)

  • 이용제;김도훈;김용상;임상욱;김양모
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.402-404
    • /
    • 2003
  • Radio frequency identification (RF-ID) is an automatic data capture (ADC) technology that comprises small data-carrying device(is called Tag) and fixed or mobile device(is called reader). Tags are attached or deattached device. Readers may be installed at locations where data capture is required, and may also be in the form of portable readers. In this paper, we are proposing an application for the subway station using the RF-ID system and a system for the gateless fare collection passing through the booth in only carrying the card. In this system that RF-ID system and Bluetooth are applied. We designed two wireless communication channels. One is the 125kHz communication channel by FSK and PSK for power supplying on the card and identification and the other is 2.4GHz channel for the collection.

  • PDF

Properties and Application of Metal Sulfide Powder

  • Park, Dong-Kyu;Bae, Sung-Yeal;Ahn, In-Shup;Jung, Kwang-Chul
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.918-920
    • /
    • 2006
  • Metal sulfide powders such as MnS, $MoS_2$ and FeS are simply used to the machinery processing improvement agent and solid lubricant in powder metallurgy industrial. And then, metal sulfide powders have received relatively little attention from powder metallurgy. Recently, the portable machine is one of the important interfaces between human or human and electronic machine. With the increase of the intelligent activity, the social and industrial demands for information display device and power source are increasing. The transition metal sulfide materials (FeS, ZnS) have received considerable attention due to the large variety of its electric, optical and magnetic properties. Among the metal sulfide, $FeS_2$ is appealing superior material for applications in $Li-2^{nd}$ battery because of high capacity. ZnS is also a famous phosphor material with various luminescence properties, such as photoluminescence (PL) and electroluminescence (EL). So generally used in the fields of display, sensors and laser. Metal sulfide materials, therefore, are provided for most widely application in all industries. In recent years, material researchers have become increasingly interested in studying with synthesis of metal sulfide.

  • PDF

Autoxidation Core@Anti-Oxidation Shell Structure as a Catalyst Support for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cell

  • Heo, Yong-Kang;Lee, Seung-Hyo
    • Corrosion Science and Technology
    • /
    • 제21권5호
    • /
    • pp.412-417
    • /
    • 2022
  • Proton exchange membrane fuel cells (PEMFCs) provide zero emission power sources for electric vehicles and portable electronic devices. Although significant progresses for the widespread application of electrochemical energy technology have been achieved, some drawbacks such as catalytic activity, durability, and high cost of catalysts still remain. Pt-based catalysts are regarded as the most efficient catalysts for sluggish kinetics of oxygen reduction reaction (ORR). However, their prohibitive cost limits the commercialization of PEMFCs. Therefore, we proposed a NiCo@Au core shell structure as Pt-free ORR electrocatalyst in PEMFCs. NiCo alloy was synthesized as core to introduce ionization tendency and autoxidation reaction. Au as a shell was synthesized to prevent oxidation of core NiCo and increase catalytic activity for ORR. Herein, we report the synthesis, characterization, electrochemical properties, and PEMFCs performance of the novel NiCo@Au core-shell as a catalyst for ORR in PEMFCs application. Based on results of this study, possible mechanism for catalytic of autoxidation core@anti-oxidation shell in PEMFCs is suggested.

밸브누설 진단용 PZT 및 Pb-Free 음향센서의 압전특성 비교 연구 (Study on the Comparison of Piezoelectric Property of Acoustic Sensor for Valve Leak Diagnosis)

  • 이상국;박성근
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3383-3388
    • /
    • 2007
  • To compare the sensor performance of AE leak diagnosis system which can measure valve leak conditions, AE activities such as RMS voltage level, AE signal trend, leak rate degree according to AE database, FFT spectrum were measured on valve of the simulated test system for power plant. AE activities were recorded and analyzed from various operating conditions including different temperature, pressure difference, valve size and fluid using both piezoelectric acoustic emission sensor and Pb-Free acoustic emission sensor. The results of this study are utilized to select the type of sensors, the frequency band for filtering and thereby to improve the signal-to-noise ratio for diagnosis or monitoring of valves in operation. As the final result of application study above, portable type leak diagnosis system by AE was developed. The outcome of the study can be definitely applied as a means of the diagnosis or monitoring system for energy saving and prevention of accident for power plant valve.

  • PDF

'LTCC를 소재로 하는 마이크로 리포머의 최적 설계에 관한 연구: (다양한 채널구조에 따른 성능변화 고찰)' (A Study on the Optimum Design for LTCC Micro-Reformer: (Performance Evaluation of Various Flow Channel Structures)

  • 정찬화;오정훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.551-552
    • /
    • 2006
  • The miniature fuel cells have emerged as a promising power source for applications such as cellular phones, small digital devices, and autonomous sensors to embedded monitors or to micro-electro mechanical system (MEMS) devices. Several chemicals run candidate at a fuel in those systems, such as hydrogen. methanol, ethanol, acetic acid, and di-methyl ether (DME). Among them, hydrogen shows most efficient fuel performance. However, there are some difficulties in practical application for portable power sources. Therefore, more recently, there have been many efforts for development of micro-reformer to operate highly efficient micro fuel cells with liquid fuels such as methanol, ethanol, and DME In our experiments, we have integrated a micro-fuel processor system using low temperature co-fired ceramics (LTCC) materials. Our integrated micro-fuel processor system is containing embedded heaters, cavities, and 3D structures of micro- channels within LTCC layers for embedding catalysts (cf. Figs. 1 and 2). In the micro-channels of LTCC, we have loaded $CuO/ZnO/Al_2O_3$ catalysts using several different coating methods such as powder packing or spraying, dipping, and washing of catalyst slurry.

  • PDF

An Overview of Self-Grown Nanostructured Electrode Materials in Electrochemical Supercapacitors

  • Shinde, Nanasaheb M.;Yun, Je Moon;Mane, Rajaram S.;Mathur, Sanjay;Kim, Kwang Ho
    • 한국세라믹학회지
    • /
    • 제55권5호
    • /
    • pp.407-418
    • /
    • 2018
  • Increasing demand for portable and wireless electronic devices with high power and energy densities has inspired global research to investigate, in lieu of scarce rare-earth and expensive ruthenium oxide-like materials, abundant, cheap, easily producible, and chemically stable electrode materials. Several potential electrode materials, including carbon-based materials, metal oxides, metal chalcogenides, layered metal double hydroxides, metal nitrides, metal phosphides, and metal chlorides with above requirements, have been effectively and efficiently applied in electrochemical supercapacitor energy storage devices. The synthesis of self-grown, or in-situ, nanostructured electrode materials using chemical processes is well-known, wherein the base material itself produces the required phase of the product with a unique morphology, high surface area, and moderate electrical conductivity. This comprehensive review provides in-depth information on the use of self-grown electrode materials of different morphologies in electrochemical supercapacitor applications. The present limitations and future prospects, from an industrial application perspectives, of self-grown electrode materials in enhancing energy storage capacity are briefly elaborated.

Recent Development in the Rate Performance of Li4Ti5O12

  • Lin, Chunfu;Xin, Yuelong;Cheng, Fuquan;Lai, Man On;Zhou, Henghui;Lu, Li
    • Applied Science and Convergence Technology
    • /
    • 제23권2호
    • /
    • pp.72-82
    • /
    • 2014
  • Lithium-ion batteries (LIBs) have become popular electrochemical devices. Due to the unique advantages of LIBs in terms of high operating voltage, high energy density, low self-discharge, and absence of memory effects, their application range, which was primarily restricted to portable electronic devices, is now being extended to high-power applications, such as electric vehicles (EVs) and hybrid electrical vehicles (HEVs). Among various anode materials, $Li_4Ti_5O_{12}$ (LTO) is believed to be a promising anode material for high-power LIBs due to its advantages of high working potential and outstanding cyclic stability. However, the rate performance of LTO is limited by its intrinsically low electronic conductivity and poor $Li^+$ ion diffusion coefficient. This review highlights the recent progress in improving the rate performance of LTO through doping, compositing, and nanostructuring strategies.

임베디드 응용프로그램의 동작 특성을 이용한 에너지 인식 스케쥴링 기법 (Energy-Aware Scheduling Technique to Exploit Operational Characteristic of Embedded Applications)

  • 한창혁;유준혁
    • 한국산업정보학회논문지
    • /
    • 제16권1호
    • /
    • pp.1-8
    • /
    • 2011
  • 효율적인 전력관리는 모바일 휴대용 제품 시장에서 중요한 경쟁력 중의 하나이다. 본 논문은 전력을 미리 예측하는 방법으로 실행중인 응용프로그램의 sleep 상태를 이용하는 Energy-Aware Scheduling policy(EASY)를 제안한다. 기존 대기 모드에서 전력소모를 줄이는 방법과의 차이점은 응용프로그램들이 얼마나 오랫동안 스케쥴러에서 sleep 상태에 있었는지를 검사하여 각 응용프로그램들의 동작 상태를 결정한다. EASY 기법은 측정된 sleep 시간을 기준으로 현재의 작업량에 맞는 적정한 CPU 클럭 주파수를 정하고, 다음 작업량의 적정한 CPU 클럭 주파수를 예측함으로서 동작 상태에서 전력 소모를 줄일 수 있다. 실험 결과 기존의 대기모드를 이용한 전력관리 기법과 비교하여 평균적으로 10-30%의 전력소모를 줄임으로써 제안된 기법의 우수성을 입증한다.

원자력발전소 전력케이블 부분방전 진단 사례 (Partial Discharge Measurement of Power Cables for Nuclear Power Plant)

  • 하체웅;주광호;임우상
    • 전기학회논문지
    • /
    • 제60권8호
    • /
    • pp.1632-1638
    • /
    • 2011
  • Electric cables are one of the most important components in a nuclear power plant since they provide the power needed to operate electrical equipment. Despite their importance, cables typically receive little attention since they are considered passive, long-lived components that have been very reliable over the years when subjected to the environmental conditions for which they were designed. The operating experience reveals that a defect of the insulator or poor construction causes the initial failure of cable. However, the number of cable failures increase with plant aging, and these cable failures are occurring within the plants' 40-year licensed period. These cable failures have resulted in plant transients, shutdown, loss of safety functions or redundancy, entries into limiting conditions for operation, and challenges for plant operators. Therefore, diagnosis of MV cable installed in NPPs has become one of the most urgent issues in recent years. In accordance with PSR, condition maintenance for cables is also continuously required. Recently, HFPD tests have been widely performed to diagnose cable in the transmission and distribution cable system. However, on-line HFPD wasn't used in the NPPs because of the danger of plant shutdown, measurement sensitivity and application problems, etc. In this paper, HFPD measurement with portable device was performed to evaluate the integrity of the 4.16kV & 13.8kV cable lines. The test results show that HFPD is highly attractive to the diagnosis of MV cables in NPP by high detection sensitivity on-site.

스마트 기기와 결합 가능한 LED 광원을 사용하는 저전력용 비분산 적외선 CO2센서 (Low Power NDIR CO2 Sensor Using LED Light Source with a Smart Device Interface)

  • 김종헌;이찬주
    • 한국통신학회논문지
    • /
    • 제40권8호
    • /
    • pp.1606-1612
    • /
    • 2015
  • 본 논문에서는 스마트폰에 장착 가능하고 휴대가 가능한 고효율 NDIR $CO_2$ 센서 모듈을 개발하였다. 저전력 회로 설계를 위하여 텅스텐램프 대신에 적외선 LED를 사용하였으며, 센서 모듈에 최적화된 광도파로를 설계 및 제작하였다. 스마트폰과 인터페이스가 가능한 회로를 통하여 스마트폰의 전원으로 센서 모듈이 구동되도록 설계하였다. $CO_2$ 농도, 온도 및 습도 등 측정된 센서의 데이터는 스마트폰 앱을 통하여 화면에 표시하였다. 측정 결과, 개발된 센서 모듈은 온도$-10^{\circ}C{\sim}50^{\circ}C$ 구간에서 0 ~ 3,000ppm 범위의 $CO_2$ 농도를 측정할 수 있었으며 측정 오차는 ${\pm}60ppm$이내였다.