• Title/Summary/Keyword: Portable monitoring system

Search Result 187, Processing Time 0.026 seconds

The Development of Portable Rotor Bar Fault Diagnosis System for Three Phase Small Induction Motors Using LabVIEW (LaVIEW를 이용한 휴대용 3상 소형유도전동기 회전자 바 고장 진단 시스템 개발)

  • Song, Myung-Hyun;Park, Kyu-Nam;Han, Dong-Gi;Lee, Tae-Hun;Woo, Hyeok-Jae
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.1
    • /
    • pp.51-55
    • /
    • 2007
  • In this paper, a portable rotor bar fault diagnosis system for small 3 phase induction motors is suggested. For portable real-tine diagnosis system, an USB-DAQ board for collecting the 3 phase current data, three current probes, and a notebook computer are used. The LabVIEW graphical language is used for filtering, analysis, storing, and monitoring the current data. The three phase stator current are filtered and transformed to frequency level by FIT. An analysis window programed by LabVIEW is located in front panel to show the FIT results and this suggested window has a zooming function to detect the fault feature more easily near the feature frequency range which is varying by the slip frequency. To show the possibility of portable rotor bar diagnosis system, three types(healthy, one rotor bar fault, two rotor bar fault) of rotor bar are intentionally prepared and compared by the suggested window of front panel. Experimental results are shown that a suggested diagnosis system is applicable to portable diagnosis system and the rotor bar fault is detected by the frequency window in front panel programed in LabVIEW graphical language.

A Portable IoT-cloud ECG Monitoring System for Healthcare

  • Qtaish, Amjad;Al-Shrouf, Anwar
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.269-275
    • /
    • 2022
  • Public healthcare has recently become an issue of great importance due to the exponential growth in the human population, the increase in medical expenses, and the COVID-19 pandemic. Speed is one of the crucial factors in saving life, particularly in case of heart attack. Therefore, a healthcare device is needed to continuously monitor and follow up heart health conditions remotely without the need for the patient to attend a medical center. Therefore, this paper proposes a portable electrocardiogram (ECG) monitoring system to improve healthcare for heart attack patients in both home and ambulance settings. The proposed system receives the ECG signals of the patient and sends the ECG values to a MySQL database on the IoT-cloud via Wi-Fi. The signals are displayed as an ECG data chart on a webpage that can be accessed by the patient's doctor based on the HTTP protocol that is employed in the IoT-cloud. The proposed system detects the ECG data of the patient to calculate the total number of heartbeats, number of normal heartbeats, and the number of abnormal heartbeats, which can help the doctor to evaluate the health status of the patient and decide on a suitable medical intervention. This system therefore has the potential to save time and life, but also cost. This paper highlights the five main advantages of the proposed ECG monitoring system and makes some recommendations to develop the system further.

Non-invasive Blood Glucose Measurement by a Portable Near Infrared (NIR) System (휴대용 근적외선 분광분석기를 이용한 비침투 혈당 측정)

  • 강나루;우영아;차봉수;이현철;김효진
    • YAKHAK HOEJI
    • /
    • v.46 no.5
    • /
    • pp.331-336
    • /
    • 2002
  • The purpose of this study is to develop a non-invasive blood glucose measurement method by a portable near infrared (NIR) system which was newly integrated by our lab. The portable NIR system includes a tungsten halogen lamp, a specialized reflectance fiber optic probe and a photo diode array type InGaAs detector; which was developed by a microchip technology based on the lithography. Reflectance NIR spectra of different parts of human body (finger tip, earlobe, and inner lip) were recorded by using a fiber optic probe. The spectra were collected over the spectral range 1100 ∼ 1740 nm. Partial least squares regression (PLSR) was applied for the calibration and validation for the determination of blood glucose. The calibration model from earlobe spectra presented better results, showing good correlation with a glucose oxidase method which is a mostly used standard method. This model predicted the glucose concentration for validation set with a SEP of 33 mg/dL. This study indicated the feasibility for non-invasive monitoring of blood glucose by a portable near infrared system.

A Portable Surface Plasmon Resonance Biosensor for Rapid Detection of Salmonella typhimurium

  • Nguyen, Hoang Hiep;Yi, So Yeon;Woubit, Abdela;Kim, Moonil
    • Applied Science and Convergence Technology
    • /
    • v.25 no.3
    • /
    • pp.61-65
    • /
    • 2016
  • Here, the rapid detection of Salmonella typhimurium by a portable surface plasmon resonance (SPR) biosensor in which the beam from a diode laser is modulated by a rotating mirror is reported. Using this system, immunoassay based on lipopolysaccharides (LPS)-specific monoclonal anti-Salmonella antibody was performed. For the purpose of orientation-controlled immobilization of antibodies on the SPR chip surface, the cysteine-mediated immobilization method, which is based on interaction between a gold surface and a thiol group (-SH) of cysteine, was adopted. As a result, using the portable SPR-based immunoassay, we detected S. typhimurium in the range from 10^7 CFU/mL to 10^9 CFU/mL within 1 hour. The results indicate that the portable SPR system could be potentially applied for general laboratory detection as well as on-site monitoring of foodborne, clinical, and environmental agents of interest.

Implementation of a Portable Electronic Nose System for Field Screening (필드 스크린을 위한 휴대용 전자코 시스템의 구현)

  • Byun, Hyung-Gi;Lee, Jun-Sub;Kim, Jeong-Do
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.41-46
    • /
    • 2004
  • There is currently much interest in the development of instruments that emulate the senses of humans. Increasingly, there is demand for mimicking the human sense of smell, which is a sophisticated chemosensory system. An electronic nose system is applicable to a large area of industries including environmental monitoring. We have designed a protable electronic nose system using an array of commercial chemical gas sensors for recognizing and analyzing the various odours. In this paper, we have implemented a portable electronic nose system using an array of gas sensors for recognizing and analyzing VOCs (Volatile Organic Compounds) in the field. The accuracy of a portable electronic nose system may be lower than an instrument such as GC/MS (Gas Chromatography/Mass Spectrometer). However, a portable electronic nose system could be used on the field and showed fast response to pollutants in the field. Several different algorithms for odours recognition were used such as BP (Back-Propagation) or LM-BP (Levenberq-Marquardt Back-Propagation). We applied RBF (Radial Basis Function) Network for recognition and quantifying of odours, which has simpler and faster compared to the previously used algorithms such as BP and LM-BP.

Development of Portable Atmospheric Environment Measurement System using Low Power Wireless Communication

  • Chae, Soohyeon;Kim, Hack-Yoon;Gim, Jangwon
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.10 no.1
    • /
    • pp.99-109
    • /
    • 2020
  • As environmental pollution has become severe due to the rapid increase in pollutant generation in the air, measurement, collection, and analysis of atmospheric environment information plays an important role. However, it is difficult to measure the high-resolution and real-time atmospheric environment of the cities and tourist spots with high population mobility only by measuring equipment of stationary measuring stations. Therefore, this paper proposes a portable atmospheric environment measurement system for real-time measurement and monitoring of atmospheric environment information. The proposed system is a portable client with a low-power wireless communication method. It is possible to reliably transmit and receive the measured data through a multi-threaded server to monitor the trend of pollutants in the air in real-time.

Implementation of a portable telemetry system based on wavelet transform. (웨이블릿 알고리즘을 적용한 휴대용 텔레미트리 시스템)

  • 박차훈;서희돈
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.113-116
    • /
    • 2000
  • In this paper presents the portable wireless ECG data detection and diagnosis system based on discreet wavelet transform. An algorithm based on wavelet transform suitable for real time implementation has been developed in order to detect ECG characteristics. In particular, QRS complex, S and T waves may be distinguished form noise, baseline drift or artifacts. Proposed telemetry system that a transmitting media using radio frequency(RF) for the middle range measurement of the physiological signals and receiving media using optical for electromagnetic interference problem. A standard hi-directional serial communication interface between the telemetry system and a personal computer or laptop, allows read-time controlling, diagnosing and monitoring of system. A portable telemetry system within a size. of 65${\times}$125${\times}$45mm consists of three parts: a digital signal processing part for physiological signal detect or diagnose, RF transmitter for data transfer and a optical receiver for command receive. Advantages of proposed telemetry system is wireless middle range(50m) FM transmission, reduce electromagnetic interference to a minimum. which enables a comfortable diagnosis system at home.

  • PDF

Development of Portable Power-Efficient Bio-Signal Monitoring System using Bluetooth for the elderly and the disabled (노약자와 장애인의 건강상태를 모니터링하기 위한 소형 저 전력 휴대용 Bio-signal 측정 장치의 개발)

  • Song, Kil-Sup;Jung, Hyun-Gwon;Song, Min;Bien, Zeung-Nam;Lee, He-Young
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.176-179
    • /
    • 2001
  • A portable bio-signal measurement system for 24-hours continuous health monitoring of the elderly and the disabled is presented. The measurement system has the functions of acquisition of various bio-signals such as ECG, EMG and EEG, wireless data transmission/receive and adjustment of parameters such as gain and cut-off frequency. The data is sent to a host computer or other device via a Bluetooth. The design targets of the developing system for volume and power consumption are $20{\times}30{\times}5(mm^3)$ and 8mW.

  • PDF

Acoustic Valve Leak Diagnosis and Monitoring System for Power Plant Valves (발전용 밸브누설 음향 진단 및 감시시스템)

  • Lee, Sang-Guk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.425-430
    • /
    • 2008
  • To verify the system performance of portable AE leak diagnosis system which can measure with moving conditions, AE activities such as RMS voltage level, AE signal trend, leak rate degree according to AE database, FFT spectrum were measured during operation on total 11 valves of the secondary system in nuclear power plant. AE activities were recorded and analyzed from various operating conditions including different temperature, type of valve, pressure difference, valve size and fluid. The results of this field study are utilized to select the type of sensors, the frequency band for filtering and thereby to improve the signal-to-noise ratio for diagnosis for diagnosis or monitoring of valves in operation. As the final result of application study above, portable type leak diagnosis system by AE was developed. The outcome of the study can be definitely applied as a means of the diagnosis or monitoring system for energy saving and prevention of accident for power plant valve. The purpose of this study is to verify availability of the acoustic emission in-situ monitoring method to the internal leak and operating conditions of the major valves at nuclear power plants. In this study, acoustic emission tests are performed when the pressurized temperature water and steam flowed through glove valve(main steam dump valve) and check valve(main steam outlet pump check valve) on the normal size of 12 and 18 ". The valve internal leak monitoring system for practical field was designed. The acoustic emission method was applied to the valves at the site, and the background noise was measured for the abnormal plant condition. To improve the reliability, a judgment of leak on the system was used various factors which are AE parameters, trend analysis, frequency analysis, voltage analysis and amplitude analysis of acoustic signal emitted from the valve operating condition internal leak.

  • PDF

The Design and Implementation Android OS Based Portable Navigation System For Visually Impaired Person and N : N Service (시각 장애인을 위한 Android OS 기반의 Portable Navigation System 설계 및 구현 과 N : N Service)

  • Kong, Sung-Hun;Kim, Young-Kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.327-330
    • /
    • 2012
  • In the rapid growth of cities, road has heavy traffic and many buildings are under constructions. These kinds of environments make more difficulty for a person who is visually handicapped to walk comfortable. To alleviate the problem, we introduce Android based Portable Navigation System to help walking for Visually Impaired Person. It follows, service center give instant real time monitoring to visually impaired person for their convenient by this system. Android based Portable Navigation System has GPS, Camera, Audio and WI-FI(wireless fidelity) available. It means that GPS location and Camera image information can be sent to service center by WI-FI network. To be specific, transmitted GPS location information enables service center to figure out the visually impaired person's whereabouts and mark the location on the map. By delivered Camera image information, service center monitors the visually impaired person's view. Also, they can offer live guidance to visually impaired person by equipped Audio with live talking. To sum up, Android based Portable Navigation System is a specialized navigation system that gives practical effect to realize more comfortable walking for visually impaired person.

  • PDF