Browse > Article
http://dx.doi.org/10.5757/ASCT.2016.25.3.61

A Portable Surface Plasmon Resonance Biosensor for Rapid Detection of Salmonella typhimurium  

Nguyen, Hoang Hiep (BioNanotechnology Research Center)
Yi, So Yeon (BioNano H-Guard Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Woubit, Abdela (Department of Pathobiology, College of Veterinary Medicine Nursing & Allied Health (CVMNAH), Tuskegee University)
Kim, Moonil (BioNanotechnology Research Center)
Publication Information
Applied Science and Convergence Technology / v.25, no.3, 2016 , pp. 61-65 More about this Journal
Abstract
Here, the rapid detection of Salmonella typhimurium by a portable surface plasmon resonance (SPR) biosensor in which the beam from a diode laser is modulated by a rotating mirror is reported. Using this system, immunoassay based on lipopolysaccharides (LPS)-specific monoclonal anti-Salmonella antibody was performed. For the purpose of orientation-controlled immobilization of antibodies on the SPR chip surface, the cysteine-mediated immobilization method, which is based on interaction between a gold surface and a thiol group (-SH) of cysteine, was adopted. As a result, using the portable SPR-based immunoassay, we detected S. typhimurium in the range from 10^7 CFU/mL to 10^9 CFU/mL within 1 hour. The results indicate that the portable SPR system could be potentially applied for general laboratory detection as well as on-site monitoring of foodborne, clinical, and environmental agents of interest.
Keywords
Biosensor; surface plasmon resonance; portable SPR; Salmonella typhimurium; Foodborne pathogen;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. M. Arshad, M. J. Wilkins, F. P. Downes, M. H. Rahbar, R. J. Erskine, M. L. Boulton, and A. M. Saeed, Foodborne Pathog. Dis. 4, 16 (2007).   DOI
2 H. L. Alakomi, and M. Saarela, Qual. Assur. Saf. Crop. 1, 142e152 (2009).   DOI
3 K. G. Maciorowski, P. Herrera, F. T. Jones, S. D. Pillai, and S. C. Ricke, Vet. Res. Commun. 30, 127e137 (2006).
4 J. M. Eijkelkamp, H. J. M. Aarts, and H. J. van der Fels-Klerx, Food Anal. Method. 2, 1 (2009).   DOI
5 B. Malorny, J. Hoorfar, C. Bunge, and R. Helmuth, Appl. Environ. Microbiol. 69, 290 (2003).   DOI
6 M. A. Mozola and J. AOAC Int. 89, 517 (2006).
7 A. Woubit, T. Yehualaeshet, S. Roberts, M. Graham, M. Kim, and T. Samuel, J. Food Prot. 76, 1948 (2013).   DOI
8 H. H. Nguyen, J. Park, S. Kang, and M. Kim, Sensors 15, 10481 (2015).   DOI
9 J. Homola, Anal. Bioanal. Chem. 377, 528 (2003).   DOI
10 M. A. Cooper, Anal. Bioanal. Chem. 377, 834 (2003).   DOI
11 S. D. Mazumdar, B. Barlen, P. Kampfer, and M. Keusgen, Biosens. Bioelectron. 25, 967 (2010).   DOI
12 G. C. M. B. Bokken, R. J. Corbee, F. Knapen, and A. A. Bergwerff, FEMS Microbiol. Lett. 222, 75 (2003).   DOI
13 D. Zhang, Y. Yan, Q. Li, T. Yu, W. Cheng, L. Wang, H. Ju, and S. Ding, J. Biotechnol. 160, 123 (2012).   DOI
14 J. M. Lee, H. K. Park, Y. Jung, J. K. Kim, S. O. Jung, and B. H. Chung, Anal. Chem. 79, 2680 (2007).   DOI
15 Y. B Shin, H. M. Kim, Y. Jung, and B. H. Chung, Sensor. Actuat. B-Chem. 150, 1 (2010).   DOI
16 B. Barlen, S. D. Mazumdar, O. Lezrich, P. Kampfer, and M. Keusgen, Sensors 7, 1427 (2007).   DOI