• Title/Summary/Keyword: Porous thin film

Search Result 200, Processing Time 0.03 seconds

Relationship Between Voltage-time Characteristics and Microstructures of Tantalum Oxide Thin Films Prepared by Anodic Oxidation (양극 산화법으로 제조된 Tantalum Oxide 박막의 전압-시간 특성과 미세구조와의 연관성)

  • 정형진;윤상옥;이동헌
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.6
    • /
    • pp.443-450
    • /
    • 1991
  • Microstructures of tantalum oxide, anodic-oxidized in oxalic acid, are shown to be related to voltage-time characteristics during formation reaction. It is observed that a crystalline phase transformed from an amorphous phase is recrystallized in the presence of the high electric field within the film, and this recrystallized film has a very porous microstructure. From the results of the XRD, the nonlinearity observed after the first spark voltage is recognized to be due to the local crystallization.

  • PDF

Electrochemical Etching of Silicon in Porous Silicon Layer Transfer Process for Thin Film Solar Cell Fabrication (초박형 태양전지의 Porous Si Layer Transfer 기술 적용을 위한 전기화학적 실리콘 에칭)

  • Lee, Ju-Young;Han, Wone-Keun;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.4
    • /
    • pp.55-60
    • /
    • 2009
  • Porous silicon film is fabricated by electrochemical etching in a chemical mixture of HF and ethanol. Effects of Si type, Si resistivity, ultrasonic frequency, current density and etching time on surface morphology of PS film were studied. Electrochemical etching in ultrasonic bath promotes the uniformity of porous layer of Si. Frequency of ultrasonic was increased from 40 kHz to 130 kHz to obtain uniform pores on the Si surface. When current density was higher, the sizes of pores were larger. The new etching cell using back contact metal and current shield help to overcome nonhomogeneity and current crowding effect, and then leads to fabricate uniform pores on the Si surface. The distribution of pore size shows no notable tendency with etching time.

  • PDF

Influence of solvent on the nano porous silica aerogels prepared by ambient drying process (상압건조 나노다공성 실리카 에어로젤에 대한 용매의 영향)

  • Ryu, Sung-Wuk;Kim, Sang-Sig;Oh, Young-Jei
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.371-377
    • /
    • 2006
  • Nano porous, transparent silica aerogels monoliths were prepared under ambient drying (1 atm, $270^{\circ}C$) condition by the combination of sol-gel process and surface modification with subsequent heat treatment. Three kinds of solvent, n-hexane, n-heptane and xylene, were selected in the point view of low surface tension and vapor pressure in order to restrain a formation of cracks during drying. Crack-free silica aerogels with over 93 % of porosity and below $0.14g/cm^3$ of density were obtained by solvent exchange and surface modification under atmosphere condition. Optimum solvent was confirmed n-heptane among these solvents through estimation of FT-IR, TGA, BET and SEM. Modified silica aerogel exhibited a higher porosity and pore size compare to unmodified aerogels. Hydrophobicity was also controled by C-H and H-OH bonding state in the gel structure and heat treatment over $400^{\circ}C$ effects to the hydrophobicity due to oxidation of C-H radicals.

The Visualization of Temperature Field for Nanoporous Thin Film using Laser-Induced Fluorescence. (형광 나노포러스 박막의 온도장 가시화)

  • Oh, Young-Su;Baek, In-Gi;Jeon, Pil-Soo;Kim, Hyun-Jung;Yoo, Jai-Suk
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2459-2464
    • /
    • 2007
  • In present study, a temperature field of specimens which was coated with fluorescence dye such as Rhodamine-B(Rh-B) has been measured, based on the fluorescence intensity. Silica(SiO2) nano porous structure with 1um thickness was constructed on a cover glass, and fluorescence dye was digested into these porous thin films. To optimize manufacturing coating process, various solvents, Rh-B concentration, and other chemical materials were applied to fabricate the specimen and all specimens were measured on the various temperature conditions. For the measurement, a 14 bit cooled CCD camera with 1600 by 1200 spatial resolution is equipped with epifluorescence microscope to obtain only fluorescence intensity from 1.2 mm by 0.9 mm field of view of the illuminated coated specimen.

  • PDF

Polycarbonate Track-Etched Membrane Micromachining by Ultrafast Pulse Laser (극초단 레이저를 이용한 PC-TEMs 초정밀 가공에 대한 연구)

  • Choi, Hae-Woon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.1
    • /
    • pp.24-30
    • /
    • 2011
  • PC-TEMs (Polycarbonate Track-Etched membranes) were micro-drilled for biomedical applications by ultrafast pulsed laser. The ablation and damage characteristics were studied on PE-TEMs by assuming porous thin membranes. The experiments were conducted in the range of 2.02 $J/cm^2$ and 8.07$J/cm^2$. The ablation threshold and damage threshold were found to be 2.56$J/cm^2$ and 1.14$J/cm^2$, respectively. While a conical shaped drilled holes was made in lower fluence region, straight shaped holes were drilled in higher fluence region. Nanoholes made the membrane as porous material and ablation characteristics for both bulk and thin film membranes were compared.

Dielectric and Electrical Properties of $Sr_{0.9}Bi_{2+x}Ta_2O_9$ Thin Films on $IrO_2$ Electrode ($IrO_2$를 하부전극으로 사용한 $Sr_{0.9}Bi_{2+x}Ta_2O_9$ 박막의 유전 및 전기적 특성)

  • 박보민;송석표;정병직;김병호
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.3
    • /
    • pp.233-239
    • /
    • 2000
  • Sr0.9Bi2+xTa2O9(x=0, 0.1, 0.2, 0.3) thin films on IrO2/SiO2/Si or Pt/Ti/SiO2/Si substrate were prepared by spin coating method using SBT stock solutions synthesized by MOD process. SBT thin films on IrO2 transformed to layered perovskite phase at $700^{\circ}C$, but showed low breakdown voltage due to their porous microstructure. The smaple of Sr0.9Bi2+xTa2O9 composition showed the best dielectric and electrical properties. When the sample of the same composition was annealed at 80$0^{\circ}C$, the dielectric and electric properties were improved due to the grian growth and dense surface. the remanent polarization values(2Pr) at $\pm$3 V for IrO2 and Pt electrodes were 10.5, 7.15$\mu$C/$\textrm{cm}^2$, respectively. The SBT thin film with IrO2 electrode showed the lower coercive field. The leakage current density and breakdown voltage of SBT thin films on IrO2 were higher than those on Pt.

  • PDF

The Tribological Behaviors of Mesoporous $SiO_2$ Thin Film Formed by Sol-Gel and Self-Assembly Method (졸겔법과 자가조립법을 통해 제조된 메조포러스 $SiO_2$ 박막의 트라이볼로지 특성)

  • Lee, Young-Ze;Shin, Yun-Ha;Kim, Ji-Hoon;Kim, Ji-Man;Kim, Tae-Sung
    • Tribology and Lubricants
    • /
    • v.23 no.6
    • /
    • pp.298-300
    • /
    • 2007
  • Frictional characteristics of mesoporous $SiO_2$ thin films were evaluated with different pore sizes. The films were manufactured by sol-gel and self-assembly methods to have a porous structure. The pores on the surface may play as the outlet of wear particle and the storage of lubricant so that the surface interactions could be improved. The pores were exposed on the surface by chemical mechanical polishing (CMP) or plasma-etching after forming the porous films. The ball-on-disk tests with mesoporous $SiO_2$ thin films on glass specimen were conducted at sliding speed of 15 rpm and a load of 0.26 N. The results show considerable dependency of friction on pore size of mesoporous $SiO_2$ thin films. The friction coefficient decreased as increasing the pore size. CMP process was very useful to expose the pores on the surface.

Surface-enhanced infrared detection of benzene in air using a porous metal-organic-frameworks film

  • Kim, Raekyung;Jee, Seohyeon;Ryu, Unjin;Lee, Hyeon Shin;Kim, Se Yun;Choi, Kyung Min
    • Korean Journal of Chemical Engineering
    • /
    • v.36 no.6
    • /
    • pp.975-980
    • /
    • 2019
  • Infrared (IR) spectroscopy is a powerful technique for observing organic molecules, as it combines sensitive vibrational excitations with a non-destructive probe. However, gaseous volatile compounds in the air are challenging to detect, as they are not easy to immobilize in a sensing device and give enough signal by themselves. In this study, we fabricated a thin nanocrystalline metal-organic framework (nMOF) film on a surface plasmon resonance (SPR) substrate to enhance the IR vibration signal of the gaseous volatile compounds captured within the nMOF pores. Specifically, we synthesized nanocrystalline HKUST-1 (nHKUST-1) particles of ca. 80 nm diameter and used a colloidal dispersion of these particles to fabricate nHKUST-1 films by a spin-coating process. After finding that benzene was readily adsorbed onto nHKUST-1, an nHKUST-1 film deposited on a plasmonic Au substrate was successfully applied to the IR detection of gaseous benzene in air using surface-enhanced IR spectroscopy.

Crystallization of Yttria-Stabilized-Zirconia Film by Sol-Gel Process (졸-겔법에 의한 이트리안 안정화 지프코니아박막의 결정화)

  • 서원찬;조차제;윤영섭;황운석
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.3
    • /
    • pp.183-190
    • /
    • 1997
  • Fabrication and crystallization characteristics of yttria($T_2O_3$) stabilized zirconia(YSZ) thin film by sol-gel process were studied. YSZ sol was synthesized with zirconium n-propoxide($Zr(OC_3H_7)_4)$) and yttrium nitrate pentahydrate ($Y(NO_3)_3.5H_2O$). YSZ film was prepared by depositing the polymeric sol on porous $Al_2O_3$ substrate by spin-coating, and the film characteristics were investigated by FRIR, TG-DTA, XRD, DSC, optical microscopy and SEM. The film topology was uniform and cracks were not found. It was found that the annealing temperature and the concentration of stabilizer affect the crystallization of YSZ film. The YSZ film began to crystallize from amorphous to tetragonal phase at 40$0^{\circ}C$, and it was not converted to cubic structure until $1100^{\circ}C$. It seemed that the grains were formed over $700^{\circ}C$and the average grain size was obtained about 0.2$\mu\textrm{m}$.

  • PDF

Interfaces of Stacking $TiO_2$ Thin Layers Affected on Photocatalytic Activities

  • Ju, Dong-U;Bu, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.189.1-189.1
    • /
    • 2013
  • Titanium dioxide (TiO2) is a wide bandgap semiconductor possessing photochemical stability and thus widely used for photocatalysis. However, enhancing photocatalytic efficiency is still a challenging issue. In general, the efficiency is affected by physio-chemical properties such as crystalline phase, crystallinity, exposed crystal facets, crystallite size, porosity, and surface/bulk defects. Here we propose an alternative approach to enhance the efficiency by studying interfaces between thin TiO2 layers to be stacked; that is, the interfacial phenomena influencing on the formation of porous structures, controlling crystallite sizes and crystallinity. To do so, multi-layered TiO2 thin films were fabricated by using a sol-gel method. Specifically, a single TiO2 thin layer with a thickness range of 20~40 nm was deposited on a silicon wafer and annealed at $600^{\circ}C$. The processing step was repeated up to 6 times. The resulting structures were characterized by conventional electron microscopes, and followed by carrying out photocatalytic performances. The multi-layered TiO2 thin films with enhancing photocatalytic efficiency can be readily applied for bio- and gas sensing devices.

  • PDF