• Title/Summary/Keyword: Porous surface

Search Result 1,491, Processing Time 0.029 seconds

Combustion and Emission Characteristics of the Surface Flames in Porous Ceramic Burner (다공세라믹 버너를 이용한 표면화염의 연소 및 배기특성)

  • Hwang, Sang-Soon
    • Journal of the Korean Society of Combustion
    • /
    • v.6 no.1
    • /
    • pp.29-35
    • /
    • 2001
  • The surface flames in porous ceramic burner are experimentally characterized to investigate the effects of equivalence ratio and firing rates. The results show that the surface flames are classified into green, red radiant and blue surface flame as decrease of equivalence ratio. And each flame is maintained very stably and shows the same flame characteristics at any orientation of ceramic burner. Particularly the blue surface flame was found to be very stable at very lean equivalence ratio at 200 to $800\;kw/m^2$ firing rates. And the exhausted NOx was analysed to find out which flame has lower NOx emission. The blue surface flame showed the lowest NOx emission regardless of the location of burner since it sustained very stable at lean mixture ratio.

  • PDF

Improvement of Cathode Reaction of Vanadium Redox Flow Battery by Reforming Graphite Felt Electrode Using Cobalt Oxide (바나듐 레독스 흐름전지 양극 반응 향상을 위한 코발트 산화물 전극 개질법 연구)

  • Park, Jeongmok;Ko, Minseong
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.3
    • /
    • pp.180-185
    • /
    • 2019
  • The demands to improve the performance of the vanadium redox flow battery have attracted an intense research on modifying the carbon-based electrode. In this study, the surface of graphite felt was reformed, using cobalt oxide. The cobalt oxide was implanted into graphite felt during hydrothermal and two step heat treatments. The cobalt was deposited by hydrothermal method and the two step heat treatments made lots of holes on the graphite felt surface which is called as porous surface. The porous surface acts as an electrochemically active site for the cathodic reaction of vanadium redox flow battery. The reformed electrode shows the electrochemically improved performance compared with the pristine electrode.

A study on porous metal mold using organic binder (유기바인더를 이용한 통기성 금형제작에 관한 연구)

  • 김경래;정성일;임용관;정해도;이석우;최헌종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1026-1029
    • /
    • 2002
  • Outlet of gas has been a big problem in deforming rubber or plastic in pressing mold. Air vent has been used to solve the problem, but it has weak points such as the increased cost, the increased number of process, and vent marks on the surface of a produce. In this study, the sintering method is used for making porous metal mold. Porous metal mold has many open pores, which are very small. When Porous metal mold is used for pressing mold, all process would be made short, produce cost would be down, and it would not leave vent marks on the surface of a produce. Porosity varies from sintering and pressing conditions, which are the pressure of compacting powder, the length of sintering time, sintering temperature and sintering atmosphere etc. This study will find optimized sintering temperature condition for the Porous metal mold.

  • PDF

Photoluminescence of Porous Silicon Carbide in Solvents

  • Lee, Ki-Hwan;Lee, Tae-Ho;Yoon, Seok-Won;Lee, Seung-Koo;Jeon, Hae-Kwon;Choi, Chang-Shik
    • Journal of Photoscience
    • /
    • v.12 no.3
    • /
    • pp.171-174
    • /
    • 2005
  • The relationship between porous surfaces and photoluminescence (PL) behavior of porous silicon carbide (PSC) in various solvents has been studied. The porous surfaces of p-type silicon carbide can be fabricated by electrochemical anodization from the 6H, 15R, 4H-${\alpha}$-SiC substrates in dark-current mode (DCM) condition. We have been investigated the dependence of the PL spectra of PSC under the medium having the different dielectric constants. It has been found that PL depends sensitively on the environment surrounding the surface. The extent of chemically stability on the surface of PSC due to the various solvents was confirmed by reflectance Fourier transform infrared (FTIR) spectroscopy. Detailed IR experiments on the PSC samples were carried out before and after various solvents immersion. These results will be offered important information on the origin of PL in porous structure.

  • PDF

An Optimization of the Porous Asphalt Pavement Permeability Function Focusing on the Surface Free Energy of Polymer Fog-Coat Methods

  • Ohmichi Massaru;Yamanokuchi Hiroshi;Maruyama Teruhiko
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.13-22
    • /
    • 2006
  • Surface fog coating methods to porous pavements with a polymer, that contains MMA as a main ingredient, are being widely used in Japan and called 'Top-Coat Processes'. They have lots of effects such as to prevention of the pavement void choking, improvement of the water permeability of the pavements and so on. The purpose of this research is to show the characterization of the polymer to optimize the functions of the polymer fog-coat methods. This study focused on the difference of 'wetting' by water among polymers used for the fog coatings, and calculation the surface free energy from the water contact angle on each material. At the end, the water permeability test were conducted using porous asphalt mixtures that were coated with several kinds of polymers. The permeability was also measured on the specimens that were forcibly choked by muddy water and the resistance to choking was compared. It is concluded that the reduction of the surface free energy between water and a polymer improves the life of the permeability functions of porous pavements. Improvement of water permeation capacity and void-blocking controlling effects can be quantitatively evaluated using the interfacial tension ($\gamma$sl) with water for the coating material (high-viscosity asphalt and hardening resin binder). Consequently, the smaller the $\gamma$sl of the coating material the higher the water permeation capacity and void-blocking controlling effects of the porous asphalt pavements.

  • PDF

A Study on Plasma Sprayed Porous Super Austenitic Stainless Steel Coating for Improvement of Bone Ingrowth (Bone ingrowth 향상을 위해 플라즈마 용사된 초내식성 오스테나이트 스테인리스강의 다공성 코팅층에 대한 연구)

  • 오근택;박용수
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.2
    • /
    • pp.81-92
    • /
    • 1996
  • The cementless fixation of bone ingrowth by porous coatings on artificial hip joint prostheses are replacing polymethylmethacrylate(PMMA) bone cement fixations. However, the major interests in the field of porous metal coating are environmental corrosivity accelerated by metal ion release, deterioration in the mechanical property of the coating, and the mechanical failure of the coatings as well as the substrate. Therefore, the selection of right materials for coatings and the development of porous coating techniques must be accomplished. Because of the existing problems in Ti and Ti alloys which are used extensively, this study is focused on the plasma spraying technique for coating on super stainless steel substrate. In order to determine the optimum conditions which satisfy the requirement for the porous coatings, under the plasma spraying, we selected the experimental parameters which extensively influenced on the characteristics of the coating through the pre-examination. Spray distance has been selected among 120, 160, and 200mm and primary gas flow rate among 70, 100, and 130 SCFH. Current and secondary gas($H_2$) flow rate was fixed at 400A, and 15 SCFH respectively. To understand the characteristics of the coatings, surface morphology, cross-sectional micro-structure, surface roughness, residual stress, and corrosion resistance were elucidated and the best conditions for the bone ingrowth improvement on artificial hip joint prostheses were found.

  • PDF

Porous Fence Effects on Surface-Pressure of a Triangular Prism in Atmospheric Boundary Layer (다공성 방풍펜스가 대기경계층내에 놓인 삼각프리즘 표면압력에 미치는 영향에 관한 연구)

  • Park, Cheol-U;Seong, Seung-Hak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2670-2680
    • /
    • 1996
  • Effeccs of porous wind fence on surface-pressure around 2-dimensional prism model of triangular cross-section were investigated experimentally. The pressure data were obtained at a Reynolds number based on the model height of Re=2.1*10$^{5}$ . Flow visualization also carried out to investigate the flow structure qualitatively. The mean velocity and turbulent intensity profiles measured at fence location were well fitted to the neutral atmospheric surface boundary layer over the open terrain. Various fences with different porosity and height were tested to investigate their effects on the surface pressure acting on a prism model at different locations. As the results, porous fence with porosity 40 ~ 50% is most effective for abating wind erosion. With decreasing porosity of the fence, pressure fluctuations on the model surface are increased. The mean pressure coefficients are decreased only when the fence height is greater than the model height. The effect of distance between wind fence and triangular prism was not significant, compared to that of the fence porosity and height.

Electrochemical properties of porous AuCu dendrite surface for the oxygen reduction reaction in alkaline solutions (알칼리 수용액에서 산소환원반응에 대한 다공성 AuCu 덴드라이트 표면의 전기화학적 특성 평가)

  • Kim, Min-Yeong;Lee, Jong Won;Cho, Soo Yeon;Park, Da Jung;Jung, Hyun Min;Lee, Joo Yul;Lee, Kyu Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • Porous dendrite structure AuCu alloy was formed using a hydrogen bubble template (HBT) technique by electroplating to improve the catalytic performance of gold, known as an excellent oxygen reduction reaction (ORR) catalyst in alkaline medium. The rich Au surface was maximized by selectively electrochemical etching Cu on the AuCu dendrite surface well formed in a leaf shape. The catalytic activity is mainly due to the synergistic effect of Au and Cu existing on the surface and inside of the particle. Au helps desorption of OH- and Cu contributes to the activation of O2 molecule. Therefore, the porous AuCu dendrite alloy catalyst showed markedly improved catalytic activity compared to the monometallic system. The porous structure AuCu formed by the hydrogen bubble template was able to control the size of the pores according to the formation time and applied current. In addition, the Au-rich surface area increased by selectively removing Cu through electrochemical etching was measured using an electrochemical calculation method (ECSA). The results of this study suggest that the alloying of porous AuCu dendrites and selective Cu dissolution treatment induces an internal alloying effect and a large specific surface area to improve catalyst performance.

Effective mechanical properties of micro/nano-scale porous materials considering surface effects

  • Jeong, Joonho;Cho, Maenghyo;Choi, Jinbok
    • Interaction and multiscale mechanics
    • /
    • v.4 no.2
    • /
    • pp.107-122
    • /
    • 2011
  • Mechanical behavior in nano-sized structures differs from those in macro sized structures due to surface effect. As the ratio of surface to volume increases, surface effect is not negligible and causes size-dependent mechanical behavior. In order to identify this size effect, atomistic simulations are required; however, it has many limitations because too much computational resource and time are needed. To overcome the restrictions of the atomistic simulations and graft the well-established continuum theories, the continuum model considering surface effect, which is based on the bridging technique between atomistic and continuum simulations, is introduced. Because it reflects the size effect, it is possible to carry out a variety of analysis which is intractable in the atomistic simulations. As a part of the application examples, the homogenization method is applied to micro/nano thin films with porosity and the homogenized elastic coefficients of the nano scale thickness porous films are computed in this paper.

Reflection and Transmission Coefficients by a Surface-Mounted Horizontal Porous Plate (수면 위에 놓인 수평 유공판에 의한 반사율과 투과율)

  • Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.5
    • /
    • pp.327-334
    • /
    • 2013
  • The interaction of oblique incident waves with a surface-mounted horizontal porous plate is investigated using matched eigenfunction expansion method under the assumption of linear potential theory. The new boundary condition on the porous plate suggested by Zhao et al.(2010) when it is situated at the still water surface is used. The imaginary part of the first propagating-mode eigenvalue in the fluid region under a horizontal porous plate, is closely related to the energy dissipation across the porous plate. By changing the porosity, plate width, wave frequencies, and incidence angles, the reflection and transmission coefficients as well as the wave loads on the porous plate are obtained. It is found that the transmission coefficients can be significantly reduced by selecting optimal porous parameter b = 5.0, also increasing the plate width and incidence angle.