• 제목/요약/키워드: Porous surface

검색결과 1,511건 처리시간 0.034초

Preparation of MgO with High Surface Area, and Modification of Its Pore Characteristics

  • Lee, Moon-Hee;Park, Dong-Gon
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권10호
    • /
    • pp.1437-1443
    • /
    • 2003
  • Thermal decomposition of hydrated surface layer of $Mg(OH)_2$ at $500^{\circ}C$ in vacuum turned non-porous MgO into porous one with high surface area of around $270 m^2$/g. Most of its surface area, 74 %, was from micropores, and rest of it was from mesopores in wedge-shaped slits, exhibiting bimodal size distribution centered around 30 and 90${\AA}$. Rehydration followed by subsequent dehydration at $300 ^{\circ}C$ in dynamic vacuum further raised the surface area to 340 $m^2$/g. Fraction of microporous surface area was increased to 93%, and the shape of the mesopores was modified into parallel slits with a specific dimension of 32 ${\AA}$. Application of $Fe_2O_3$ over MgO via iron complex formation did not alter the pore characteristics of MgO core, except slightly increased pore dimension. Over the course of the modification, $Fe_2O_3$ stayed on the surface possibly via spill-over reaction.

양극산화공정을 이용한 반사방지 성형용 나노 마스터 개발 (Fabrication of Nano Master with Anti-reflective Surface Using Aluminum Anodizing Process)

  • 신홍규;박용민;서영호;김병희
    • 한국생산제조학회지
    • /
    • 제18권6호
    • /
    • pp.697-701
    • /
    • 2009
  • A simple method for the fabrication of porous nano-master for the anti-reflection effect on the transparent substrates is presented. In the conventional fabrication methods for antireflective surface, coating method using materials with low refractive index has usually been used. However, it is required to have a high cost and long processing time for mass production. In this paper, we developed a porous nano-master with anti-reflective surface for the molding stamper of the injection mold, hot embossing and UV imprinting by using the aluminum anodizing process. Through two-step anodizing and etching processes, a porous nano-master with anti-reflective surface was fabricated at the large area. Pattern size Pore diameter and inter-pore distance are about 130nm and 200nm, respectively. In order to replicate anti-reflective structure, hot embossing process was performed by varying the processing parameters such as temperature, pressure and embossing time etc. Finally, antireflective surface can be successfully obtained after etching process to remove selectively silicon layer of AAO master.

  • PDF

소수성 처리 방법에 따른 플라즈마 전해 산화 처리된 마그네슘 합금의 내식성 (Effect of Hydrophobizing Method on Corrosion Resistance of Magnesium Alloy with Plasma Electrolytic Oxidation)

  • 주재훈;김동현;정찬영;이정훈
    • 한국표면공학회지
    • /
    • 제52권2호
    • /
    • pp.96-102
    • /
    • 2019
  • Magnesium and its alloys are prone to be corroded, thus surface treatments improving corrosion resistance are always required for practical applications. As a surface treatment of magnesium alloys, plasma electrolytic oxidation (PEO), creating porous stable oxide layer by a high voltage discharge in electrolyte, enhances the corrosion resistance. However, due to superhydrophilicity of the porous oxide layer, which easily allow the penetration of corrosive media toward magnesium alloys substrate, post-treatments inhibiting the transfer of corrosive media in porous oxide layer are required. In this work, we employed a hydrophobizing method to enhance the corrosion resistance of PEO treated Mg alloy. Three types of hydrophobizing techniques were used for PEO layer. Thin Teflon coating with solvent evaporation, self-assembled monolayer (SAM) coating of octadecyltrichlorosilane (OTS) based on solution method and SAM coating of perfluorodecyltrichlorosilane (FDTS) based on vacuum method significantly enhances corrosion resistance of PEO treated Mg alloy with reducing the contact of water on the surface. In particular, the vacuum based FDTS coating on PEO layer shows the most effective hydrophobicity with the highest corrosion resistance.

다중압출공정을 이용한 알루미나 연속다공질체 제조 및 그의 생체친화성 평가를 위한 In-vitro, In-vivo 실험 (Fabrication of Continuously Porous Alumina Bodies by Multi-Extrusion Process and their In-vitro and In-vivo Study for Biocompatibility)

  • 강인철;조순희;송호연;이병택
    • 한국세라믹학회지
    • /
    • 제41권7호
    • /
    • pp.560-566
    • /
    • 2004
  • 다중 압출 공정을 이용하여 알루미나 연속다공질체를 제조하기 위해 기공형성제로서 탄소 분말을 사용하였으며 세라믹 분말의 성형을 용이하게 하기 위하여 에틸렌 비닐 아세테이트 고분자를 바인더로 사용하였다. 압출 횟수, 압출비 및 재료의 부피비를 제어함으로써 균일한 기공의 크기와 기공률을 용이하게 제어하였다. 제조된 소결체는 연속기공을 가질 뿐아니라 우수한 비표면적을 가졌으며, 기존의 공정에 의해 제조된 알루미나 다공질 재료보다 우수한 곡강도 값을 보였다. 생체 친화성 평가를 위해 인간의 뼈모세포인 MG-63 세포를 이용해 In-vitro 실험을 실시한 결과 기공의 아랫면, 윗면, 내부 및 외부에 세포가 잘 생착하여 네트워크 형태로 치밀하게 잘 성장하였다. 또한 이 재료를 이용하여 3차원 다공질체로 제조한 후 생체적합성을 평가하기 위해 쥐의 피하조직에 이식한 결과 어떠한 염증 소견이나 생체 거부반응이 없었으며 섬유조직으로 잘 둘러 쌓인 다공질체 주위로 새로운 모세혈관이 활발히 생성되었다.

Chitosan/hydroxyapatite composite coatings on porous Ti6Al4V titanium implants: in vitro and in vivo studies

  • Zhang, Ting;Zhang, Xinwei;Mao, Mengyun;Li, Jiayi;Wei, Ting;Sun, Huiqiang
    • Journal of Periodontal and Implant Science
    • /
    • 제50권6호
    • /
    • pp.392-405
    • /
    • 2020
  • Purpose: Titanium implants are widely used in the treatment of dentition defects; however, due to problems such as osseointegration failure, peri-implant bone resorption, and periimplant inflammation, their application is subject to certain restrictions. The surface modification of titanium implants can improve the implant success rate and meet the needs of clinical applications. The goal of this study was to evaluate the effect of the use of porous titanium with a chitosan/hydroxyapatite coating on osseointegration. Methods: Titanium implants with a dense core and a porous outer structure were prepared using a computer-aided design model and selective laser sintering technology, with a fabricated chitosan/hydroxyapatite composite coating on their surfaces. In vivo and in vitro experiments were used to assess osteogenesis. Results: The quasi-elastic gradient and compressive strength of porous titanium implants were observed to decrease as the porosity increased. The in vitro experiments demonstrated that, the porous titanium implants had no biological toxicity; additionally, the porous structure was shown to be superior to dense titanium with regard to facilitating the adhesion and proliferation of osteoblast-like MC3T3-E1 cells. The in vivo experimental results also showed that the porous structure was beneficial, as bone tissue could grow into the pores, thereby exhibiting good osseointegration. Conclusions: Porous titanium with a chitosan/hydroxyapatite coating promoted MC3T3-E1 cell proliferation and differentiation, and also improved osseointegration in vitro. This study has meaningful implications for research into ways of improving the surface structures of implants and promoting implant osseointegration.

산업부산물을 사용한 포러스 콘크리트의 수질정화 특성에 관한 실험적 연구 (An Experimental Study on Water-Purification Properties of Porous Concrete Using Industrial By-Products)

  • 조영수;김정환;권혁준;박승범
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.717-722
    • /
    • 2002
  • The results of an experiment on the water purification of the porous concrete and its influence on the compressive strength are reported in this paper. Two different sizes of coarse aggregate of 5-10, and 10-20mm, and three absolute volume ratios of paste to aggregate of 30, 40 and 50 percent for a given size of aggregate were used. For the compressive strength, the concrete with the aggregate size of 5-10mm showed much higher strength than that with the aggregate size of 10-20mm. But, the compressive strength is higher when the ratio of paste to aggregate is smaller. In the water purification experiment, the amount of attached an organism on the porous concrete surface indirectly is examined by measuring the consumption of the Dissolved Oxygen (DO). The ability of the water purification is evaluated by the removal amount of the Total Phosphorus(T-P) and Total Nitrogen(T-N). The ability of the removal of the T-N and T-P in the test water is superior to a porous concrete with a smaller size of aggregate and a higher void content. These results are owing to a large specific surface area of the specimen. As a result, porous concrete using by-products has sufficient performance of water purification.

  • PDF

나노 다공 구조를 가진 알루미나 재료의 UV 레이저 미세가공에 관한 실험적 기초 연구 (Basic Experimental Investigations to UV Laser Micro-Machining of Nano-Porous Alumina Ceramic Material)

  • 신보성;이정한
    • 한국기계가공학회지
    • /
    • 제11권1호
    • /
    • pp.62-67
    • /
    • 2012
  • Recently UV laser is widely used to process micro parts using various materials such as polymers, metals and ceramics because it has a very high intensity at the focused spot area. It is generally known that there are still some difficulties for alumina($Al_2O_3$) ceramics to directly make micro patterns like holes and lines on the surface of working material using 355nm UV laser because the alumina has a very low absorption coefficient at that wavelength. But nowadays new alumna with nano-porous holes is developed and applied to advanced micro functional parts of IT, BT and BT industries. In this paper, we are going to show the mechanism of photo-thermal ablation for nano-porous ceramics. Inside hole there is a lot of multiple reflections along the depth of hole. Experimentally we can find the micro hole drilling and micro grooving on the surface of nano-porous alumina.

투과성 격벽을 이용한 수평 운동하는 사각형 탱크내의 슬로싱 감쇠 (Sloshing Damping in a Swaying Rectangular Tank Using a Porous Bulkhead)

  • 조일형
    • 한국해양공학회지
    • /
    • 제32권4호
    • /
    • pp.228-236
    • /
    • 2018
  • The performance of a porous swash bulkhead for the reduction of the resonant liquid motion in a swaying rectangular tank was investigated based on the assumption of linear potential theory. The Galerkin method (Porter and Evans, 1995) was used to solve the potential flow model by adding a viscous frictional damping term to the free-surface condition. By comparing the experimental results and the analytical solutions, we verified that the frictional damping coefficient was 0.4. Darcy's law was used to consider the energy dissipation at a porous bulkhead. The tool that was developed with a built-in frictional damping coefficient of 0.4 was confirmed by small-scale experiments. Using this tool, the free-surface elevation, hydrodynamic force (added mass, damping coefficient) on a wall, and the horizontal load on a bulkhead were assessed for various combinations of porosity and submergence depth. It was found that the vertical porous bulkhead can suppress sloshing motions significantly when properly designed and by selecting the appropriate porosity(${\approx}0.1$) and submergence depth.

활성화 및 에어로졸 공정에 의한 다공성 그래핀 볼 제조 및 슈퍼커패시터 응용 (Synthesis of Porous Graphene Balls by the Activation and Aerosol Process for Supercapacitors Application)

  • 이총민;장한권;장희동
    • 한국입자에어로졸학회지
    • /
    • 제15권4호
    • /
    • pp.183-190
    • /
    • 2019
  • Here, we introduce porous graphene balls (PGB) showing superior electrochemical properties as supercapacitor electrode materials. PGB was fabricated via activation of graphene oxides (GO) by H2O2 and aerosol spray drying in series. Effect of activation on the morphology, specific surface area, pore volume, and electrochemical properties were investigated. As-prepared PGB showed spherical morphology containing pores, which lead to the effective prevention of restacking in graphene sheets. It also exhibited a large surface area, unique porous structures, and high electrical conductivity. The electrochemical properties of the PGB as electrode materials of supercapacitor are investigated by using aqueous KOH under symmetric two-electrode system. The highest specific capacitance of PGB was 279 F/g at 0.1 A/g. In addition, the high rate capability (93.8% retention) and long-term cycling stability (92.2%) of the PGB were found due to the facilitated ion mobility between the porous graphene layers.

Improved Conversion Efficiency of Dye-sensitized Solar Cells Based on TiO2 Porous Layer Coated TiO2 Nanotubes on a Titanium Mesh Substrate as Photoanode

  • Lim, Jae-Min;He, Weizhen;Kim, Hyung-Kook;Hwang, Yoon-Hwae
    • Current Photovoltaic Research
    • /
    • 제1권2호
    • /
    • pp.90-96
    • /
    • 2013
  • We report here flexible dye-sensitized solar cells (DSSC) based on Ti-mesh electrodes that show good mechanical flexibility and electrical conductivity. $TiO_2$ nanotube arrays prepared by electrochemical anodizing Ti-mesh substrate were used as photoanode. A Pt-coated Ti-mesh substrate was used as counter electrode. The photoanodes were modified by coating a $TiO_2$ porous layer onto the $TiO_2$ nanotubes in order to increase the specific surface area. To increase the long term stability of the DSSCs, a gel type electrolyte was used instead of a conventional liquid type electrolyte. The DSSC based on $33.2{\mu}m$ long porous $TiO_2$ nanotubes exhibited a better energy conversion efficiency of ~2.33%, which was higher than that of the DSSCs based on non-porous $TiO_2$ nanotubes.