• Title/Summary/Keyword: Porous silica

Search Result 224, Processing Time 0.028 seconds

Synthesis of Nano Structured Silica and Carbon Materials and Their Application (계면활성제를 이용한 나노 실리카 및 카본 소재의 합성과 응용)

  • Park Seungkyu;Kim Jongyun;Cho Wangoo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.3 s.47
    • /
    • pp.321-328
    • /
    • 2004
  • Nano silica ball and nano carbon ball are developed commercially by template synthesis method. Adsorption of unpleasant smelling substances such as ammonia, trimethylamine, acetaldehyde and methyl mercaptane onto nano carbon ball with hollow macroporous core/mesoporous shell structures, nano carbon ball, was investigated and compared with that onto odor adsorbent materials, activated carbon, commercially available. The adsorption and decomposition of malodor at nano carbon ball exhibited superior than those onto activated carbon. The physicochemical properties such as mesopore size distributions, large nitrogen BET specific surface area and large pore volume and decomposition of malodor were studied to interpret the predominant adsorption performance. The nano carbon ball is expected to be useful in many applications such as deodorizers, adsorbent of pollutants.

Characterization of Porous Asphalt Concrete Coated with MMA Resin (아크릴 수지로 코팅한 배수성 아스팔트 콘크리트의 특성 평가)

  • Choi, Tae-Jun;Lee, Hyun-Jong;Kim, Tae-Woo;Song, Jae-Hyok
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.111-120
    • /
    • 2009
  • This paper presents a fundamental findings of the functional and structural performance of the porous asphalt concrete coated with MMA resin. To evaluate the structural performance, cantabro, wheel tracking, moisture sensitivity and indirect tensile fatigue tests are performed. The tests results show that the cantabro loss is reduced three times and fatigue resistance is significantly increased after the specimens are coated with MMA resin. However there are little changes in the rutting and moisture damage resistances before and after the coating. Air voids, permeability and BPT(British Pendulum Test) tests are conducted to study the functional performance. It is observed form the tests that the air voids and permeability are slightly decreased after the coating. However, the changes in the air voids and permeability are negligible. The skid resistance of the coated specimens is lower than reference specimens. However, the skid resistance is maintained beyond the level of the reference specimens when silica sands are chipped on top of the coated surface.

  • PDF

Preparation of Shape Stabilized PCM Using Porous Materials for Application to Buildings (건축적용을 위한 다공성 물질을 이용한 상안정 PCM 제조)

  • Jeong, Su-Gwang;Yu, Seulgi;Jang, Seulae;Park, Jin-Sung;Kim, Taehyun;Lee, Jeong-Hun;Kim, Sumin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.8
    • /
    • pp.432-437
    • /
    • 2013
  • The increase of greenhouse gas emission and decrease of fossil fuel are being caused by the indiscreet consumption of energy by people. Recently, green policy has been globally implemented to reduce energy consumption. This paper studied the research to reduce the energy consumption in buildings, by using the heat storage properties of PCM. PCM has to prevent leakage from the liquid state. Therefore, we prepared form stable PCM, by using the vacuum impregnation method. Three kinds of organic PCMs were impregnated into the structure of porous material. The characteristics of the composites were determined by using SEM, DSC, FTIR and TGA. SEM morphology showed the micro structure of silica fume/PCM. Also, thermal properties were examined by DSC and TGA analyses; and the chemical bonding of the composite was determined by FTIR analysis.

Characterization of NiO and Co3O4-Doped La(CoNi)O3 Perovskite Catalysts Synthesized from Excess Ni for Oxygen Reduction and Evolution Reaction in Alkaline Solution (과량의 니켈 첨가로 합성된 NiO와 Co3O4가 도핑된 La(CoNi)O3 페로브스 카이트의 알칼리용액에서 산소환원 및 발생반응 특성)

  • BO, LING;RIM, HYUNG-RYUL;LEE, HONG-KI;PARK, GYUNGSE;SHIM, JOONGPYO
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.1
    • /
    • pp.41-52
    • /
    • 2021
  • NiO and Co3O4-doped porous La(CoNi)O3 perovskite oxides were prepared from excess Ni addition by a hydrothermal method using porous silica template, and characterized as bifunctional catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) for Zn-air rechargeable batteries in alkaline solution. Excess Ni induced to form NiO and Co3O4 in La(CoNi)O3 particles. The NiO and Co3O4-doped porous La(CoNi)O3 showed high specific surface area, up to nine times of conventionally synthesized perovskite oxide, and abundant pore volume with similar structure. Extra added Ni was partially substituted for Co as B site of ABO3 perovskite structure and formed to NiO and Co3O4 which was highly dispersed in particles. Excess Ni in La(CoNi)O3 catalysts increased OER performance (259 mA/㎠ at 2.4 V) in alkaline solution, although the activities (211 mA/㎠ at 0.5 V) for ORR were not changed with the content of excess Ni. La(CoNi)O3 with excess Ni showed very stable cyclability and low capacity fading rate (0.38 & 0.07 ㎶/hour for ORR & OER) until 300 hours (~70 cycles) but more excess content of Ni in La(CoNi)O3 gave negative effect to cyclability.

Exploiting Natural Diatom Shells as an Affordable Polar Host for Sulfur in Li-S Batteries

  • Hyean-Yeol Park;Sun Hyu Kim;Jeong-Hoon Yu;Ji Eun Kwon;Ji Yang Lim;Si Won Choi;Jong-Sung Yu;Yongju Jung
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.198-206
    • /
    • 2024
  • Given the high theoretical capacity (1,675 mAh g-1) and the inherent affordability and ubiquity of elemental sulfur, it stands out as a prominent cathode material for advanced lithium metal batteries. Traditionally, sulfur was sequestered within conductive porous carbons, rooted in the understanding that their inherent conductivity could offset sulfur's non-conductive nature. This study, however, pivots toward a transformative approach by utilizing diatom shell (DS, diatomite)-a naturally abundant and economically viable siliceous mineral-as a sulfur host. This approach enabled the development of a sulfurlayered diatomite/S composite (DS/S) for cathodic applications. Even in the face of the insulating nature of both diatomite and sulfur, the DS/S composite displayed vigorous participation in the electrochemical conversion process. Furthermore, this composite substantially curbed the loss of soluble polysulfides and minimized structural wear during cycling. As a testament to its efficacy, our Li-S battery, integrating this composite, exhibited an excellent cycling performance: a specific capacity of 732 mAh g-1 after 100 cycles and a robust 77% capacity retention. These findings challenge the erstwhile conviction of requiring a conductive host for sulfur. Owing to diatomite's hierarchical porous architecture, eco-friendliness, and accessibility, the DS/S electrode boasts optimal sulfur utilization, elevated specific capacity, enhanced rate capabilities at intensified C rates, and steadfast cycling stability that underscore its vast commercial promise.

Preparation of Monodispersed Silica-Rubitherm®Microparticles Using Membrane Emulsification and Their Latent Heat Properties (막유화법을 이용한 단분산성 실리카-루비덤® 마이크로 입자의 제조 및 잠열 특성)

  • Kim, Soo-Yeon;Jung, Yeon-Seok;Lee, Sun-Ho;You, Jin-Oh;Youm, Kyung-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.215-225
    • /
    • 2015
  • Recently, the importance of energy saving and alternative energy is significantly increasing due to energy depletion and the phase change material (PCM) research for saving energy is also actively investigating. In this research, the membrane emulsification using SPG membrane was used to make various microencapsulated phase change material (MPCM) particles which were comprised of $Rubitherms^{(R)}$ (RT-21 and RT-24) core and silica coating. We investigated the pressure of the dispersion phase, the concentration of surfactant, and the ratio of $Rubitherm^{(R)}$ and silica to prepare various MPCM particles. The DSC and TGA were used to examine the heat stability and latent heat properties. Also, PSA, SEM, and optical microscopy were used to confirm the size of $Rubitherm^{(R)}$ particles and the thickness of silica shell. The average of particle size was $7-8{\mu}m$. And, FT-IR was also used to enforce the qualitative analysis. Finally, the MPCM particles obtained from membrane emulsification showed monodispersed size distribution and the heat stability and latent heat were kept up to 80% compared to pure $Rubitherm^{(R)}$. So, it can be effectively used for wallpaper, buildings and interior products for energy saving as PCMs.

High Performance Separator at High-Temperature for Lithium-ion Batteries (고온 싸이클 성능이 우수한 리튬 이차전지 분리막)

  • Yoo, Seungmin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.789-793
    • /
    • 2021
  • A lithium secondary battery is the most promising candidate for future energy storage devices. On the other hand, the battery capacity decreases gradually due to the small amount of water and decomposition of the salts during the charging and discharging process, which deteriorates at high temperatures. Many researchers focused on increasing the cycling performance, but there have been few studies on the fundamental problem that removes water and HF molecules. In this study, silane molecules that are capable of absorbing water and HF molecules are introduced to the separator. Firstly, silica-coated amino-silane (APTES, 3-aminopropyltriethoxysilane) was synthesized, then the silica reacted with epoxy-silane, GPTMS ((3-glycidyloxypropyl)trimethoxysilane). A ceramic-coated separator was fabricated using the silane-coated silica, which is coated on porous polyethylene substrates. FT-IR spectroscopy and TEM analysis were performed to examine the chemical composition and the shape of the silane-coated silica. SEM was performed to confirm the ceramic layers. LMO half cells were fabricated to evaluate the cycling performance at 60 ℃. The cells equipped with a GPTMS-silica separator showed stable cycling performance, suggesting that it would be a solution for improving the cycling performance of the Li-ion batteries at high temperatures.

Thermal conductivity of high temperature porous insulation (다공성 고온 절연체의 열전도도 특성)

  • 조장호;김영채;이성철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.3
    • /
    • pp.504-513
    • /
    • 1997
  • Ideal candidates for the thermal-protection system of advanced spacecraft like Space Shuttle, are FRCI(Fibrous Refractory Composite Insulation) and AETB(Alumina-Enhanced Thermal Barrier). In the present work, we carried out the mathematical modeling and computer simulation of the thermal response of FRCI to heat, pulse, comparing with that of silica. Also, we calculated the conductivity of FRCI as various variables at the temperature range of 100~2000 K.

  • PDF

Cyclosophoraose as a Novel Chiral Stationary Phase for Enantioseparation

  • JUNG, YUN-JUNG;LEE, SANG-HOO;PAIK, SEUNG-R.;JUNG, SEUN-HO
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1338-1342
    • /
    • 2004
  • Cyclosophoraoses (Cys), cyclic ${\beta}-(1{\rightarrow}2)-D-glucans$ produced by Rhizobium meliloti 2011, were used as a novel chiral stationary phase for the enantiomeric separation. A novel Cys stationary phase, chemically immobilized onto porous silica via aminopropyltrimethoxysilane as a molecular linker, showed good separation for each racemate of bupivacain (separation factor, $\alpha$=1.3), propranolol ($\alpha$=1.3), and fenoprofen ($\alpha$=2.9), respectively, under the mobile phase of water: methanol (80:20, v/v) at a constant flow rate of 0.9 ml/min at pH7.

MEASUREMENT OF SYNTHESIS RATE OF LONG-CHAIN ACYL-COENZYME A ESTER IN BOVINE LIVER BY HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY

  • Mitsuhashi, T.;Mitsumoto, M.;Yamashita, Y.;Ozawa, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.1 no.2
    • /
    • pp.99-106
    • /
    • 1988
  • A high performance liquid chromatographic procedure is described for the direct determination of the picomole amount of palmitoyl-Coenzyme A and stearoyl-Coenzyme A, using a stainless steel column packed with C-18 derivatized porous silica ($5{\mu}m$), an isocratic elution with a mixture of 33 mM $KH_2PO_4$/acetonitrile as a mobile phase and a UV detector. The long-chain acyl-Coenzyme A esters were determined in incubated microsomal fractions of a bovine liver to demonstrate the utility of this method for monitoring acyl-CoA synthesis in biological samples. The reaction rate of palmitate was higher than that of stearate. After a 60 minute incubation period, the generated amount of palmitoyl-Coenzyme A and stearoyl-Coenzyme A were approximately 70 and 20 n mol/mg micresomal protein, respectively. The advantage of this method are in that no decomposition of the CoA esters is involved, while the constituent molecular species is detected.