• 제목/요약/키워드: Porous polymer concrete

검색결과 25건 처리시간 0.026초

결합재량에 따른 포러스 폴리머 콘크리트의 공극률과 강도 및 식생 블록 내 초기 생장 특성 (Void Ratio and Strength of Porous Polymer Concrete and Initial Growth Properties within Planting Block with Binder Contents)

  • 성찬용;김영익
    • 한국농공학회논문집
    • /
    • 제52권6호
    • /
    • pp.101-110
    • /
    • 2010
  • This study was performed to evaluate the void ratio and strength of porous polymer concrete used coarse aggregates and unsaturated polyester resin to find optimum mix design of porous polymer concrete for planting block. Also, this study was performed to evaluate the planting properties of herbaceous plant and cool-season grass in porous polymer blocks based on the experimental results of porous polymer concrete to develop environmentally friendly planting blocks. Tests for the void ratio and compressive strength of porous polymer concrete were performed at the curing age 7 days. Also, kinds of plants such as Tall fescue, Perennial ryegrass, Lespedeza and Alfalfa for planting were applied to porous polymer blocks. Within 6 weeks after seed, initial germination ratio, cover view and growth length for planting blocks were estimated by various methods.

투수성 폴리머 콘크리트의 성능 향상에 관한 실험적 연구 (An Experimental Study on Performance in Elevation of Porous Polymer Concrete)

  • 최규형;노병철;주명기;이복규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.953-956
    • /
    • 2008
  • 본 연구에서는 불포화폴리에스터 수지(U.P.)를 이용한 투수성 폴리머 콘크리트를 제조하여 투수성 및 강도 특성을 실험적으로 규명하였다. 그 결과 투수성 폴리머 콘크리트의 공극률 및 투수계수는 폴리머 결합재량의 증가에 따라 감소하는 경향을 나타내었다. 또한 투수성 폴리머 콘크리트의 압축강도는 폴리머 결합재량의 증가에 따라 감소하는 경향을 나타내었다. 투수성 폴리머 콘크리트의 압축강도는 투수계수가 증가함에 따라 감소하였다.

  • PDF

섬유보강 폴리머 포러스콘크리트의 특성에 관한 실험적 연구 (Studies on the Properties of Fiber Reinforced Porous Concrete Using Polymer)

  • 박승범;이병재;이준;손성우;조광연
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.581-584
    • /
    • 2006
  • This study is analyzed mechanical properties and durability of permeability porous concrete to mix polymer and steel fiber for the enhance of performance and durability of porous concrete. It proves that void ratio and permeability are tallied with internal and external standard of paving porous concrete. A property of strength is increased according as the mixing rate of polymer and steel fiber increase, but it showed the tendency to be reduced on the contrary when mixed upwards of 20% of polymer mixing rate and 0.9vol.% of steel fiber mixing rate. As a result, it is possible to make an enhanced which increased 16% of compressive strength and 30% of flexural strength steel fiber reinforced polymer porous concrete at the mixing rate of 10vol.% of polymer and 0.6% of steel fiber.

  • PDF

폴리프로필렌섬유보강 포러스 폴리머 콘크리트의 특성 (Properties of Porous Polymer Concrete Reinforced Polypropylene Fiber)

  • 김영익;성찬용
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.723-726
    • /
    • 2004
  • Porous polymer concrete can be applied to roads, sidewalks, river embankment, drain pipes, conduits, retaining walls, yards, parking lots, plazas, interlocking blocks, etc. This study is to examine a content ratio of polypropylene fiber to improve bending strength, impact resistance and freezing and thawing rssistance of porous polymer concrete. Also, this study is performed to develop the porous polymer concrete using recycled coarse aggregate and blast furnace slag for application of structures needed permeability. At 7 days of curing, compressive strength, flexural strength, water permeability and flexural load are in the ragge of $17\~21MPa,\;5\~7MPa,\;4.1\times10^{-2}\~7.7\times10^{-2}cm/s$, respectively. It is concluded that the recycled aggregate can be used in the porous polymer concretes.

  • PDF

충전재 종류에 따른 포장용 포러스 폴리머 콘크리트의 강도 및 투수 특성 (Strengths and Permeability Properties of Porous Polymer Concrete for Pavement with Different Fillers)

  • 김영익;성찬용
    • 한국농공학회논문집
    • /
    • 제49권4호
    • /
    • pp.51-59
    • /
    • 2007
  • Recently, concrete has been made porous and used for sound absorption, water permeation, vegetation and water purification according to void characteristics. Many studies are carried out on the utilization of sewage sludge, fly ash and waste concrete to reduce the environmental load. This study was performed to evaluate the void, strength, relationship between void and strength, permeability and chemical resistance properties of porous polymer concrete for pavement with different fillers. An unsaturated polyester resin was used as a binder, crushed stone and natural sand were used as an aggregate and bottom ash, fly ash and blast furnace slag were used as fillers. The mix proportions were determined to satisfy the requirement for the permeability coefficient, $1{\times}10^{-2}$ cm/s for general permeable cement concrete pavement in Korea. The void ratios of porous polymer concrete with fillers were in the range of $18{\sim}23%$. The compressive strength and flexural load of porous polymer concrete with fillers were in the range of $19{\sim}22$ MPa and $18{\sim}24$ KN, respectively. The permeability coefficients of porous polymer concrete with fillers were in the range of $5.5{\times}10^{-1}{\sim}9.7{\times}10^{-2}$ cm/s. At the sulfuric acid resistance, the weight reduction ratios of porous polymer concrete immersed during 8-week in 5% $H_{2}SO_{4}$ were in the range of $1.08{\sim}3.56%$.

폴리머를 혼화재로 혼입한 투수콘크리트의 물리적 특성에 관한 실험적 연구 (An Experimental Study on the Physical Properties of Porous Cement Concrete Using Polymer as an Admixture)

  • 채창우;민병렬;심종우
    • 콘크리트학회논문집
    • /
    • 제12권5호
    • /
    • pp.131-139
    • /
    • 2000
  • Porous Concrete usually contains large amount of voids(about 10∼20%) after compaction so that it has relatively high permeability. It has been introduced in domestic since early 1980's but it has problems such as lack of optimized mixture, low strength and durability, and other defects, etc. The purpose of this study is to manufacture high-performance porous concrete using polymer to enhance the mechanical properties. The results of this study are as follows; the compressive strength range 12 92∼207kgf/㎠, the tensile strength range is 14∼28kgf/㎠, the bending stength range is 42∼73kgf/㎠, and the coefficient permeability range is 5.77×10-2∼6.79×10-1cm/sec. To develope high-performance porous concrete. further studies are needed on optimum mixture of fineness modulus and admixture.

폴리머를 혼입한 투수성 포장용 콘크리트의 내구성능에 관한 실험적 연구 (Studies on the Durable Properties of Porous Concrete for Permeable Pavement using Polymer)

  • 박승범;서대석;이병재;송재립;손성우;조광연
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.703-706
    • /
    • 2005
  • This study is analyzed mechanical properties and durability of pavement of a road permeability porous concrete to mix polymer for the enhance of porous concrete of performance and durability. As a result, void ratio showed the tendency which the mixing rate of polymer is decreased a little as increased. And, the influence of void ratio according to the kind of polymer has the difference, but void ratio showed the tendency which the mixing rate of polymer is decreased a little as increased. Compressive strength showed the tendency which the mixing rate of polymer is increased a little as increased. but, it showed the tendency to be reduced rather when above $20\%$ it mixed polymer mixing rate $10\%$ at apex.

  • PDF

고흡수성 수지를 활용한 다공질 구조 콘크리트 개발을 위한 기초적 연구 (Fundamental Study on the Development of Porous Concrete Using Super Absorbent Polymer)

  • 조재현;백성진;임군수;한준희;김종;한민철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 가을학술발표대회논문집
    • /
    • pp.217-218
    • /
    • 2023
  • This study is to develop porous concrete using super absorbent polymer, which possesses insolubility and high absorption capacity, as a substitute material for lightweight soil. Various mixtures were prepared using aggregates, cement, mixing water, and super absorbent polymer, and the absorption ratio and compressive strength were examined for each mixture. As the amount of super absorbent polymer added increased, the absorption ratio also increased, reaching up to 35-105%. However, the compressive strength decreased by 49.5% to 65.3%. This is believed to be due to the inherent properties of super absorbent polymer, which led to an increase in the absorption ratio but, in turn, reduced the binding strength of cement paste particles, resulting in a decrease in compressive strength.

  • PDF

폴리머를 이용한 포러스 콘크리트의 동결융해저항성에 관한 연구 (A Study on the Freeze-Thaw Resistance of Porous Concrete Using Polymer)

  • 이상태
    • 한국환경복원기술학회지
    • /
    • 제9권3호
    • /
    • pp.17-25
    • /
    • 2006
  • To increase freeze-thaw resistance of porous concrete, this study examined physical properties of polymer by replacing paste used as a binding material with polymer, using unsaturated polyester and epoxy resin, and changing the mixing ratio of polymer. According to the result of this study, when the mixing ratio of resin paste to aggregates was 11 to 16%, voids volume was 33 to 37% and unit weight was about 1620 to 1720kg/$m^3$. In comparison with previous studies using cement paste, voids volume increased by about 7 to 16%, while unit weight decreased by about 100 to 300kg/$m^3$. Compressive strength was 90 to 155kg/$cm^2$ at the age of 7 days, which was 5-40kg/$cm^2$ bigger than porous concrete using cement paste. From a viewpoint of freeze-thaw resistance, it was identified that pluse velocity fell by 0.23km/sec, about 7% of the original velocity, when the cycle of freeze-thaw was repeated 300 times. In spite of 300 repetitions of the cycle, relative dynamic modulus of elasticity was more than 60%, which suggested that its freeze-thaw resistance was more excellent compared with the result that relative dynamic modulus of elasticity of porous concrete using cement paste was 60 % or less under the condition of 80 repetitions of freeze-thaw cycle.

강섬유보강 폴리머 포러스콘크리트의 내구특성에 관한 연구 (Studies on the Durable Properties of Fiber Reinforced Porous Concrete Using Polymer)

  • 김봉균;박승범;서대석;이병재;김정희
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.565-568
    • /
    • 2006
  • This study evaluates the physical mchanical properties, durability of porous concrete for pavement according to content of polymer and steel fiber to elicit the presentation of data and the way to enhance its function for the practical field application of porous concrete as a material of pavement. The results of the test indicate that in every condition, the void ratio and the coefficient of water permeability of porous concrete for pavement satisfy both the domestic standards and proposition values. Among the properties of strength, the compressive strength satisfies the standards in the specification of Korea National Housing Corporation as for every factor of mixture but in the case of the flexural strength, more than 0.6Vol.% of steel fiber satisfied the Japan Concrete Institute proposition values. The case when 0.6Vol.% of steel fiber and 10Wt.% of polymer are used at the same time shows that the loss rate of mass by Cantabro test became 36.7% better and freeze-thaw resistance became 33% better.

  • PDF