• Title/Summary/Keyword: Porous polyethylene

Search Result 91, Processing Time 0.033 seconds

Preparation of pore-filling membranes for polymer electrolyte fuel cells and their cell performances (고체 알칼리 연료전지용 음이온 교환 세공충진막의 제조 및 특성)

  • Choi, Young-Woo;Park, Gu-Gon;Yim, Sung-Dae;Lee, Mi-Soon;Yang, Tae-Hyun;Kim, Chang-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.150-153
    • /
    • 2009
  • Anion exchange polymer electrolyte pore-filling membranes consisting of the whole hydrocarbon materials were prepared by photo polymerization with various quaternary ammonium cationic monomers and characterized on the properties for applying to solid alkali fuel cell (SAFC). Hydrocarbon porous substrates such as polyethylene were used for the preparation of the pore-filling membranes. The hydroxyl ion conductivity of the polymer electrolyte membranes prepared in this research was dependent on the composition ratio of an electrolyte monomer and crosslinking agents used for polymerization. Furthermore, these pore-filling membranes have commonly excellent properties such as smaller dimensional affects when swollen in solvents, higher mechanical strength, lower fuel crossover through the membranes, and easier preparation process than those of traditional cast membranes.

  • PDF

Implementation of a self-mixing type LDF probe and blood flow simulator (자기혼합형 LDF 프로브와 혈류 시뮬레이터의 구현)

  • Ko, Han-Woo;Kim, Jong-Weon
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.133-138
    • /
    • 1999
  • In this pager, the authors have implemented a blood flow simulator and a LDF(laser Doppler flowmeter) probe using self-mixing effect of the laser diode. The purpose of the blood flow simulator is to simulate microvascular blood flow in tissue. It consists of melinex film (thickness = $123\;{\mu}m$) which has similar optical characteristics to epidermis and porous polyethylene filter (Vyon, porosity 35%, mean pore size $50\;{\mu}m$, thickness=1 mm) which has similar optical characteristics to dermis. The blood flowmeter probe consists of laser diode(5 mW, 780 nm wavelength), CD lens(focal length 12 mm). current-to-voltage converter, highpass filter, and premplifier. It doesn't need optical fiber, therefore, implementation of the probe is simpler than conventional probe using optical fiber.

  • PDF

A surgical approach to linear scleroderma using Medpor and dermal fat graft

  • Kim, Keun Tae;Sun, Hook;Chung, Eui Han
    • Archives of Craniofacial Surgery
    • /
    • v.20 no.2
    • /
    • pp.112-115
    • /
    • 2019
  • Linear scleroderma en coup de sabre (LScs) is a variant of localized scleroderma. This disease typically occurs in patients in their 20s or younger individuals and predominantly occurs in the forehead area. A 26-year-old man with linear scleroderma was surgically treated at our center with Medpor (porous polyethylene) and dermal fat graft for the forehead lesion. After 26 months of postoperative follow-up, the depressed lesion that appeared scarred as well as the margins improved significantly. The surgical treatment of LScs using Medpor and dermal fat graft is an effective treatment modality that can increase patient satisfaction.

Study on the Hollow Fiber Nano-composite Membrane Preparation onto the Porous PVDF Membrane Surfaces using the Interfacial Polymerization (다공성 PVDF 막의 polyamide 계면중합법처리를 통한 나노 중공사 복합막 제조 연구)

  • Kang, Su Yeon;Cho, Eun Hye;Kim, Ihl hyung;Kim, Cheong Sik;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.24 no.2
    • /
    • pp.107-112
    • /
    • 2014
  • The composite membranes were prepared on the surface of hydrophobic porous poly (vinylidene fluoride) (PVDF) hollow fiber membranes through the interfacial polymerization. The preparation variables were the concentrations of piperazine (PIP), trimesoyl chloride (TMC) and the contents of polyethylene glyco l (PEG). The separation characterization of the resulting membranes were carried out for aqueous 100 ppm solution of NaCl, $CaSO_4$, and $MgCl_2$ and also mixed 300 ppm solution of NaCl and $CaSO_4$ in terms of the flux and rejection. Both the flux and rejection were the highest when the interfacial polymerization was conducted using TMC. When TMC concentration was 0.1 wt%, the flux and rejection were shown 48.3 LMH ($L/m^2{\cdot}hr$) and 59%, respectively. To improve the flux, the annealing post-treatment and the addition of PEG into piperazine were done. As expected, the overall flux was enhanced while the rejection was reduced.

Thin-Film Composite (TFC) Membranes with Hydrophilic Ethyl Cellulose-g-poly(ethylene glycol) (EP) Substrates for Forward Osmosis (FO) Application (친수성을 가지는 에틸셀룰로스-폴리에틸렌글리콜 가지형 고분자의 정삼투 복합막 지지층으로의 응용)

  • Yu, Yun Ah;Kim, Jin-joo;Kang, Hyo;Lee, Jong-Chan
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.510-518
    • /
    • 2016
  • Ethyl cellulose-g-poly(ethylene glycol) (EP) was synthesized by esterification of carboxylic acid functionalized methoxy polyethylene glycol (MPEG-COOH) with ethyl cellulose (EC) in order to develop a hydrophilic substrate for thin-film composite (TFC) membrane in a forward osmosis (FO) system. A porous EP substrate, fabricated by a non-solvent induced phase separation method, was found to be more hydrophilic than the EC substrate due to the presence of polyethylene glycol (PEG) side chains in the EP. Since the EP substrate exhibits smaller water contact angles and higher porosity, the structural parameter (S) of TFC-EP is smaller than that of TFC-EC, indicating that internal concentration polarization (ICP) within porous substrates can occur less when TFC-EP is used as a membrane. For example, the water flux value of the TFC-EP is 15.7 LMH, whereas the water flux value of the TFC-EC is only 6.6 LMH. Therefore, we strongly believe that the TFC-EP could be a promising candidate with good FO performances.

Fabrication and Characterization of Zirconia-Alumina Composites by Organic-Inorganic Solution Technique (유기물-무기물 용액법을 이용한 지르코니아-알루미나 복합체의 제조 및 특성)

  • Kim, Youn Cheol;Bang, Moon-Soo;Lee, Sang Jin
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.628-634
    • /
    • 2005
  • Zirconia-alumina polymer precursor was prepared from zirconium acetylacetonate (ZA). paluminium nitrate (AN), polyethylene glycol (PEG), and ethyl alcohol via an organic-inorganic solution technique. The thermal properties and viscosity of the polymer precursor were measured by differential scanning calorimetry (DSC), thermograbimetric analyzer (TGA), and dynamic viscometer. The vigorous exothermic reaction with volume expansion occurred at $140^{\circ}C$. The volume expansion was caused by abrupt decomposition of the organic group in metal compounds and the metal ions-PEG reaction. The evidences for these reactions were confirmed by FT-IR and $^{13}C$ solid NMR results. The peak intensity at N-O, O-H and C=C decreased with increasing temperature. This indicated that the decomposition of metal compounds and the metal ions-PEG reaction occurred during the vigorous exothermic reaction. At $800^{\circ}C$ for 2 h, the porous powders transformed to the crystalline $ZrO_2-Al_2O_3$ composites.

Preparation and Characterization of PEG-impregnated Aloe Gel through DIS Processing of Aloe vera Leaf Slice (DIS 공정에 의한 Polyethylene Glycol 함침 알로에 베라 겔의 제조 및 특성화)

  • Kwon, Hye Mi;Hur, Won;Lee, Shin Young
    • KSBB Journal
    • /
    • v.28 no.6
    • /
    • pp.356-365
    • /
    • 2013
  • The novel Aloe gels were prepared with dewatering and impregnation by soaking (DIS) processing of Aloe vera leaf slice at four different temperatures (25, 35, 45 and $55^{\circ}C$), using dehydration solution of 40% (w/v) polyethylene glycol (PEG4000). The PEG-impregnation to Aloe vera leaf slice during DIS was observed depending on immersion temperature, and the PEG-impregnated Aloe vera gel (PEG-i-AVG) obtained was characterized using $^1H$ NMR, FT-IR, GPC, XRD and TGA. The PEG-i-AVG had the higher levels of Aloe bioactives (glucomannan and O-acetyl contents) and better quality indices by $^1H$ NMR and FT-IR spectroscopy than those of native Aloe gel. Also, the obtained Aloe gel maintained the bimodal patterns in higher molecular weight region by GPC indicating no degradation of polysaccharide from native Aloe gel. The result observed by SEM confirmed a surface modification by forming the porous structure, and TGA result exhibited better thermal stability than that of native Aloe gel. XRD result revealed that the crystalline structure in Aloe gel was led by incorporation of PEG. Significant decrease of %insolubility and high enhancement of water solubility index were observed, respectively, and highly ordered conformation such as a helix structure was also indicated by Congo red reaction. We concluded that the modification effect for enhancing function of native Aloe gel was successfully obtained by DIS process using PEG as a dehydrating agent. These results suggested that this DIS process had a high potential for developing a new minimally processed product from Aloe vera leaf.

Short-term Sustained Release Formulation of KC-6620 with Porous Carrier (다공성 증량제를 이용한 KC-6620 단기용출지연입제의 제제)

  • Yu, Ju-Hyun;Park, Chang-Kyu;Lee, Byung-Hoi;Cho, Kwang-Yun
    • Korean Journal of Environmental Agriculture
    • /
    • v.11 no.2
    • /
    • pp.155-162
    • /
    • 1992
  • In order to extend the releasing period of granular formulation to approximately 20 days, the KC-6620-adsorbed granules were formulated with carriers and polyethylene glycol as adjuvant. The releasing rates of active ingredient from the formulations were evaluated in aqueous medium. The baked bentonite was found most effective carrier to sustain the release of KC-6620. Due to, however, low releasing rate of active ingredient after 20 days, bentonite formulation appeared to be of no practical for the short-term sustained release of KC-6620. The increased pore volume of bentonite granular formulation by adding pyrophyllite increased remarkably the released amount of KC-6620 from bentonite-pyrophyllite(4 : 6) granule up to 85% of total active ingredient incorporated. Addition of polyethylene glycol to the bentonite-pyrophyllite granule further increased the releasing rate of KC-6620. With KC-6620 content in the bentonite-pyrophyllite(4 : 6) granule, the releasing rate of active ingredient was markedly reduced.

  • PDF

Composite Membrane Preparation for Low Pressure Using Salting-Out Method and Its Application to Nanofiltration Process (염석법에 의한 저압용 역삼투막 제조 및 NF로의 적용)

  • Jeon, Yi Seul;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.440-446
    • /
    • 2015
  • Nanofiltration composite membranes were prepared through the ion exchange polymers coating onto the porous microfiltration polyethylene (PE) membrane surfaces the salting-out and phase separated and pressurization (PSP) methods. The existence of coating on the surfaces was confirmed by the scanning electronic microscopy. The resulting membranes were characterized under the various conditions, such as the coating material, coating time, ionic strength etc., in terms of flux and rejection for NaCl 100 ppm solution. Under the same coating conditions of 10,000 ppm coating solution concentration and 3 atm coating pressure for both the coating materials of PEI and PSSA_MA, the flux 91.2 LMH and rejection 64.6% were obtained for PEI whereas 122.7 LMH and 38.1% were observed for PSSA_MA. From this study, it may be concluded that the composite membrane preparation is possible.

Effect of Inorganic Nanocomposite Based Liners on Deodorization of Kimchi

  • Chung, Kwon;Park, Hyun Jin;Shin, Yang Jai
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.2
    • /
    • pp.55-62
    • /
    • 2021
  • This study aims to reduce the rancid odor generated during the fermentation process of kimchi by inserting zinc oxide (ZnO) into an inorganic porous material with a high surface area to decompose or adsorb the fermentation odor. ZnO activated by the presence of moisture exhibits decomposition of rancid odors. Mixed with Titanium dioxide (TiO2), a photocatalyst. To manufacture the packaging liner used in this study, NaOH, ZnCl2, and TiO2 powder were placed in a tank with diatomite and water. The sludge obtained via a hydrothermal ultrasonication synthesis was sintered in an oven. After being pin-milled and melt-blended, the powders were mixed with linear low-density polyethylene (L-LDPE) to make a masterbatch (M/B), which was further used to manufacture liners. A gas detector (GasTiger 2000) was used to investigate the total amount of sulfur compounds during fermentation and determine the reduction rate of the odor-causing compounds. The packaging liner cross-section and surface were investigated using a scanning electron microscope-energy dispersive X-ray spectrometer (SEM-EDS) to observe the adsorption of sulfur compounds. A variety of sulfur compounds associated with the perceived unpleasant odor of kimchi were analyzed using gas chromatography-mass spectrometry (GC-MS). For the analyses, kimchi was homogenized at room temperature and divided into several sample dishes. The performance of the liner was evaluated by comparing the total area of the GC-MS signals of major off-flavor sulfur compounds during the five days of fermentation at 20℃. As a result, Nano-grade inorganic compound liners reduced the sulfur content by 67 % on average, compared to ordinary polyethylene (PE) foam liners. Afterwards SEM-EDS was used to analyze the sulfur content adsorbed by the liners. The findings of this study strongly suggest that decomposition and adsorption of the odor-generating compounds occur more effectively in the newly-developed inorganic nanocomposite liners.