• Title/Summary/Keyword: Porous particles

Search Result 383, Processing Time 0.035 seconds

Granular Thin Film of Titanium Dioxide for Hydrogen Gas Sensor (입상의 이산화티타늄 박막을 이용한 수소센서)

  • Song, Hye-Jin;Oh, Dong-Hoon;Jung, Jin-Yeun;Nguyen, Duc Hoa;Cho, You-Suk;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.19 no.6
    • /
    • pp.325-329
    • /
    • 2009
  • Titanium dioxide thin films were fabricated as hydrogen sensors and its sensing properties were tested. The titanium was deposited on a $SiO_2$/Si substrate by the DC magnetron sputtering method and was oxidized at an optimized temperature of $850^{\circ}C$ in air. The titanium film originally had smooth surface morphology, but the film agglomerated to nano-size grains when the temperature reached oxidation temperature where it formed titanium oxide with a rutile structure. The oxide thin film formed by grains of tens of nanometers size also showed many short cracks and voids between the grains. The response to 1% hydrogen gas was ${\sim}2{\times}10^6$ at the optimum sensing temperature of $200^{\circ}C$, and ${\sim}10^3$ at room temperature. This extremely high sensitivity of the thin film to hydrogen was due partly to the porous structure of the nano-sized sensing particles. Other sensor properties were also examined.

A Technical Review on Principles and Practices of Self-potential Method Based on Streaming Potential (흐름 전위에 기초한 자연 전위 탐사법의 원리 및 활용)

  • Song, Seo Young;Nam, Myung Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.4
    • /
    • pp.231-243
    • /
    • 2018
  • Streaming potential (SP) arises from fluid flow through effectively connected pores. From this potential, formation water information as well as fluid flow properties can be estimated. As micro particles being located in boundary between subsurface porous media and fluid are charged to form electrical double layer, fluid flow caused by several reasons generates SP, one of electrokinetic phenomena. Occurrence mechanism of SP is complex and signal strength is relatively weak compared to noise. However, application of self potential survey using SP to monitoring of formation fluid is expanding because of its' convenience of exploration without artificial source and repetitiveness of signal. This paper accounts for the occurrence mechanism of SP studied before, including governing equations and analyzes previous various case studies of SP according to the change of physical properties of materials. It helps to increase understanding about SP and also lays the foundations of the application of SP to fields.

Preparation and Thermal Degradation Behavior of WO3-TiO2 Catalyst for Selective Catalytic Reduction of NOx (NOx 제거용 WO3-TiO2 계 SCR 촉매 제조 및 열적열화거동연구)

  • Shin, Byeongkil;Kim, Janghoon;Yoon, Sanghyeon;Lee, Heesoo;Shin, Dongwoo;Min, Whasik
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.596-600
    • /
    • 2011
  • Thermal degradation behavior of a $WO_3-TiO_2$ monolithic catalyst was investigated in terms of structural, morphological, and physico-chemical analyses. The catalyst with 4 wt.% $WO_3$ contents were prepared by a wet-impregnation method, and a durability test of the catalysts were performed in a temperature range between $400^{\circ}C$ and $800^{\circ}C$ for 3 h. An increase of thermal stress decreased the specific surface area, which was caused by grain growth and agglomeration of the catalyst particles. The phase transition from anatase to rutile occurred at around $800^{\circ}C$ and a decrease in the Brønsted acid sites was confirmed by structural analysis and physico-chemical analysis. A change in Brønsted acidity can affect to the catalytic efficiency; therefore, the thermal degradation behavior of the $WO_3-TiO_2$ catalyst could be explained by the transition to a stable rutile phase of $TiO_2$ and the decrease of specific surface area in the SCR catalyst.

Nanocomposite Electrode Materials Prepared from Pinus roxburghii and Hematite for Application in Supercapacitors

  • SHRESTHA, Dibyashree
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.219-236
    • /
    • 2022
  • Wood-based nanocomposite electrode materials were synthesized for application in supercapacitors by mixing nanostructured hematite (Fe2O3) with highly porous activated carbon (AC) produced from the wood-waste of Pinus roxburghii. The AC was characterized using various instrumental techniques and the results showed admirable electrochemical properties, such as high surface area and reasonable porosity. Firstly, AC was tested as an electrode material for supercapacitors and it showed a specific capacitance of 59.02 Fg-1 at a current density of 1 Ag-1, cycle life of 84.2% after 1,000 cycles (at a current density of 3 Ag-1), and energy density of 5.1 Wh/kg at a power density of 135 Wkg-1. However, when the AC was composited with different ratios of Fe2O3 (1:1, 2:1, and 1:2), there was an overall improvement in its electrochemical performance. Among the 3 ratios, 2:1 (AC:Fe2O3) had the best specific capacitance of 102.42 Fg-1 at 1 Ag-1, cycle life of 94.4% capacitance after 1,000 cycles (at a current density of 3 Ag-1), and energy density of 8.34 Wh/kg at a power density of 395.15 Wkg-1 in 6 M KOH electrolyte in a 3-electrode experimental setup with a high working voltage of 1.55 V. Furthermore, when Fe2O3 was doubled, 1:2 (AC:Fe2O3), the electrochemical capacitive performance of the electrode twisted and deteriorated due to either the accumulation of Fe2O3 particles within the composite or higher bulk resistance value of pure Fe2O3.

A Long Term Characteristics of Hydraulic Conductivity and Tensile Strength of Natural Fiber Drain with respect to Installation Conditions (천연섬유배수재의 타설 조건에 따른 장기 투수계수 및 인장강도의 특성)

  • Jang, Jin-Young;Jang, Yeon-Soo;Cho, Sam-Duck
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.15-21
    • /
    • 2008
  • Long term changes of hydraulic properties and tensile strength of natural fiber drain (NFD) are analyzed and compared with those of intact NFD's. NFD was buried in distilled water, two types of seawater and clay soils obtained in southern and western parts of Korea, Kwang-Yang and Si-hwa. Specimens are taken out in 0, 3, 9 and 18 month intervals, and durability tests of the NFD are performed. Hydraulic conductivity of the NFD samples decreased compared with that of intact NFD samples, because clay particles easily passed to coarsened mesh of filters and clogged the porous stone below and reduced hydraulic conductivity. Tensile strength of drains from the soil bucket is reduced larger than those in the seawater and the distilled water. Strength reduction was higher in summer than winter.

A Change of Porewater Pressure under Particle Crushing of Carbonate Sand of Sabkha Layer (Sabkha층 탄산질 모래의 입자파쇄에 따른 간극수압 변화)

  • Kim, Seok-Ju;Yi, Chang-Tok;Ji, Won-Baek;Han, Heui-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.2
    • /
    • pp.19-32
    • /
    • 2014
  • Carbonate sand of Sabkha layer in the middle east was made of deposition of shell fragments and it consisted of porous particles containing inner void. Generally, at yield stress the soil structure begins to break down, so the porewater pressure and the settlement are increased rapidly. In carbonate sand, unlike quartz sand if particle crushing happens, the inner voids are exposed and porewater pressure can be decreased under yield stress. Porewater pressure can be determined as the sum of excess porewater pressure due to increase of relative density, inner void expose of particle under particle crushing stress and rearrangement of crushed particle fragments. The porewater pressure can be negative value in case of greater amount of inner void expose, so if particle crushing is bigger, the porewater pressure value is smaller. The negative value zone of porewater pressure from triaxial test result means particle crushing effect is bigger than outer void decrease effect and the particle crushing effect dominant zone size was 1.50∼3.46% from triaxial test result of Sabkha layer.

Nanophase Catalyst Layer for Direct Methanol Fuel Cells

  • Chang Hyuk;Kim Jirae
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.4
    • /
    • pp.172-175
    • /
    • 2001
  • Nanophase catalyst layer for direct methanol fuel cell has been fabricated by magnetron sputtering method. Catalyst metal targets and carbon were sputtered simultaneously on the Nafion membrane surface at abnormally higher gas (Ar/He mixture) pressure than that of normal thin film processing. They could be coated as a novel structure of catalyst layer containing porous PtRu or Pt and carbon particles both in nanometer range. Membrane electrode assembly made with this layer led to a reduction of the catalyst loading. At the catalyst loading of 1.5mg $PtRu/cm^2$ for anode and 1mg $Pt/cm^2$ for cathode, it could provide $45 mW/cm^2$ in the operation at 2 M methanol, 1 Bar Air at 80"C. It is more than $30\%$ increase of the power density performance at the same level of catalyst loading by conventional method. This was realized due to the ultra fine particle sizes and a large fraction of the atoms lie on the grain boundaries of nanophase catalyst layer and they played an important role of fast catalyst reaction kinetics and more efficient fuel path. Commercialization of direct methanol fuel cell for portable electronic devices is anticipated by the further development of such design.

Preparation of Cr2O3/AP Composites and their Thermal Decomposition Characteristics (Cr2O3/AP 복합체 제조 및 그 열분해 특성)

  • Jung, Jae-Yun;Kim, Jae-Kyeong;Shim, Hong-Min;Kim, Hyoun-Soo;Koo, Kee-Kahb
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.145-153
    • /
    • 2015
  • $Cr_2O_3/AP$ (ammonium perchlorate) energetic composites were prepared by a method of solvent/anti-solvent. XRD analysis revealed that the crystalline structure of AP in $Cr_2O_3/AP$ composites is the same as that of pure AP. SEM photomicrograph shows that an average size of cuboid $Cr_2O_3/AP$ composites is approximately $2.5{\mu}m$. TGA analysis shows that the addition of submicron $Cr_2O_3$ particles into AP lowers the HTD (high-temperature decomposition) compared to that of neat AP and the activation energy of the $Cr_2O_3/AP$ composites was calculated by the isoconversional Starlink method. Considering changes in the activation energy, the decomposition reaction mechanism of AP was suggested as follows; the decomposition with the formation of nucleation sites renders formation of porous structure in the composites up to conversion of about 0.25 and after further conversion of over 0.3, it seems that decomposition reaction vigorously takes place rather than sublimation of AP.

Rare Metal Chemistry, Microstructures, and Mineralogy of Coal Ash from Thermal Power Plants of Korea (화력발전소 석탄회의 희유금속화학, 미세구조, 광물학적 특성)

  • Jeong, Gi Young;Kim, Seok-Hwi;Kim, Kangjoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.147-163
    • /
    • 2015
  • Chemical and mineralogical properties of coal ash samples from the nine thermal power plants of Korea were investigated to acquire basic data for estimating the potential of rare metal recovery. Chemical compositions of coal ash were consistent with those of average shale and foreign coal ashes. However, there were small differences between the metal contents of domestic anthracitic and imported bituminous coal ashes. Unburned coal particles were much abundant in the ash of domestic anthracitic coal. Chalcophile elements were relatively enriched in the fly ash compared to bottom ash. Silicate glass was the major component of coal ash with minor minerals such as quartz, illite (muscovite), mullite, magnetite, lime, and anhydrite. Al and Si were the major components of the glass with varying contents of Ca, Fe, K, and Mg. Glass occurred in a form of porous sphere and irregular pumace-like grain often fused with iron oxide spheres or other glass grains. Iron oxide spheres were fine intergrowth of fast-grown iron oxide crystals in the matrix of silicate glass. Chemical, microstructural, and mineralogical properties would guide successful rare metal recovery from coal ash.

Review of the CO2 Geological Storage Using Nanoparticle-stabilized CO2 Foam (나노입자기반 CO2 폼을 이용한 CO2 지중저장에 대한 기술적 고찰)

  • Son, Han Am
    • Economic and Environmental Geology
    • /
    • v.53 no.2
    • /
    • pp.213-220
    • /
    • 2020
  • When CO2 foam is injected into the saline aquifer, the relative permeability of CO2 decreases and its viscosity increases, thereby reducing mobility in porous media and ultimately improving CO2 storge with enhanced sweep efficiency. In general, surfactants were used to fabricate CO2 foam. Recently, nanoparticles have been used to form stable foam than surfactant. This paper introduces CO2 storage technology using nanoparticle stabilized CO2 foam. If the surface of the hydrophilic nanoparticles is partially modified into a CO2-philic portion, the particles have an affinity for CO2 and water, thus forming a stable CO2 foam even in deep saline aquifers under high temperature and high salinity conditions, thereby it can be stored in the pores of the rock. In terms of economics, injection method using nanopaticle-stabilized CO2 foam is more expensive than the conventional CO2 injection, but it is estimated that it will have price competitiveness because the injection efficiency is improved. From an environmental point of view, it is possible to inject chemical substances such as surfactants and nanomaterials into aquifers or reservoirs for specific purposes such as pollutant removal and oil production. However, some studies have shown that nanoparticles and surfactants are toxic to aquatic animals, so environmentally proven substances should be used. Therefore, further research and development will be needed to study the production and injection of nanoparticle-stabilized CO2 foam that are environmentally safe and economically reasonable.