• 제목/요약/키워드: Porous nanomaterials

검색결과 23건 처리시간 0.029초

양극산화 기술을 이용한 금속산화물 나노구조 제조 및 응용 동향 (Technology Trends in Fabrication of Nanostructures of Metal Oxides by Anodization and Their Applications)

  • 최진섭;이재광;임재훈;김성중
    • 공업화학
    • /
    • 제19권3호
    • /
    • pp.249-258
    • /
    • 2008
  • 규칙적으로 배열되어 있는 나노크기의 기공을 가지고 있는 다공성 알루미나는 최근 응용범위의 확대 때문에 많은 관심을 끌고 있다. 이러한 다공성 알루미나를 제조하는 기본 원리는 제한된 조건하에서 금속을 양극산화 시키는 것이다. 전기화학적 양극산화에 의한 다공성 구조 제어 및 성장 메커니즘에 대한 연구는 최근 알루미늄에서부터 다른 부동태금속으로 확대되었으며 특히 최근에는 타이타늄 산화물 나노구조 제어에 성공적으로 적용되었다. 본 총설에서는 알루미늄의 양극산화 원리를 기술하고 최근 연구되어 있는 타이타늄 및 다른 부동태 금속에 적용되는 양극산화 기술의 흐름을 다룬다.

Highly Sensitive Gas Sensors Based on Nanostructured $TiO_2$ Thin Films

  • 장호원;문희규;김도홍;심영석;윤석진
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.16.1-16.1
    • /
    • 2011
  • $TiO_2$ is a promising material for gas sensors. To achieve high sensitivities, the material should exhibit a large surface-to-volume ratio and possess the high accessibility of the gas molecules to the surface. Accordingly, a wide variety of porous $TiO_2$ nanomaterials synthesized by wet-chemical methods have been reported for gas sensor applications. Nonetheless, achieving the large-area uniformity and comparability with well-established semiconductor production processes of the methods is still challenging. An alternative method is soft-templating which utilizes nanostructured inorganic or organic materials as sacrificial templates for the preparation of porous materials. Fabrication of macroporous $TiO_2$ films and hollow $TiO_2$ tubes by soft-templating and their gas sensing applications have been reported recently. In these porous materials composed of assemblies of individual micro/nanostructures, the form of links or necks between individual micro/nanostructures is a critical factor to determine gas sensing properties of the material. However, a systematic study to clarify the role of links between individual micro/nanostructures in gas sensing properties of a porous metal oxide matrix is thoroughly lacking. In this work, we have demonstrated a fabrication method to prepare highly-ordered, embossed $TiO_2$ films composed of anatase $TiO_2$ hollow hemispheres via soft-templating using polystyrene beads. The form of links between hollow hemispheres could be controlled by $O_2$ plasma etching on the bead templates. This approach reveals the strong correlation of gas sensitivity with the form of the links. Our experimental results highlight that not only the surface-to-volume ratio of an ensemble material composed of individual micro/nanostructures but also the links between individual micro/nanostructures play a critical role in evaluating the sensing properties of the material. In addition to this general finding, the facileness, large-scale productivity, and compatability with semiconductor production process of the proposed fabrication method promise applications of the embossed $TiO_2$ films to high-quality sensors.

  • PDF

다공성 압전 스펀지를 이용한 플렉서블 에너지 하베스팅 소자 개발 (Flexible Energy Harvesting Device Based on Porous Piezoelectric Sponge)

  • 허동훈;현동열;박성철;박귀일
    • 한국재료학회지
    • /
    • 제32권11호
    • /
    • pp.508-514
    • /
    • 2022
  • Piezoelectric composite films which are enabled by inorganic piezoelectric nanomaterials-embedded polymer, have attracted enormous attention as a sustainable power source for low powered electronics, because of their ease of fabrication and flexible nature. However, the absorption of applied stress by the soft polymeric matrices is a major issue that must be solved to expand the fields of piezoelectric composite applications. Herein, a flexible and porous piezoelectric composite (piezoelectric sponge) comprised of BaTiO3 nanoparticles and polydimethylsiloxane was developed using template method to enhance the energy conversion efficiency by minimizing the stress that vanishes into the polymer matrix. In the porous structure, effective stress transfer can occur between the piezoelectric active materials in compression mode due to direct contact between the ceramic particles embedded in the pore-polymer interface. The piezoelectric sponge with 30 wt% of BaTiO3 particles generated an open-circuit voltage of ~12 V and a short-circuit current of ~150 nA. A finite element method-based simulation was conducted to theoretically back up that the piezoelectric output performance was effectively improved by introducing the sponge structure. Furthermore, to demonstrate the feasibility of pressure detecting applications using the BaTiO3 particles-embedded piezoelectric sponge, the composite was arranged in a 3 × 3 array and integrated into a single pressure sensor. The fabricated sensor array successfully detected the shape of the applied pressure. This work can provide a cost-effective, biocompatible, and structural strategy for realizing piezoelectric composite-based energy harvesters and self-powered sensors with improved energy conversion efficiency.

The Synthesis and Electrochemical Performance of Microspherical Porous LiFePO4/C with High Tap Density

  • Cho, Min-Young;Park, Sun-Min;Kim, Kwang-Bum;Lee, Jae-Won;Roh, Kwang Chul
    • Journal of Electrochemical Science and Technology
    • /
    • 제3권3호
    • /
    • pp.135-142
    • /
    • 2012
  • Over the past few years, $LiFePO_4$ has been actively studied as a cathode material for lithium-ion batteries because of its advantageous properties such as high theoretical capacity, good cycle life, and high thermal stability. However, it does not have a very good power capability owing to the low lithium-ion diffusivity and poor electronic conductivity. Reduction in particle size of $LiFePO_4$ to the scale of nanometers has been found to dramatically enhance the above properties, according to many earlier reports. However, because of the intrinsically low tap density of nanomaterials, it is difficult to commercialize this method. Many studies are being carried out to improve the volumetric energy density of this material and many methods have been reported so far. This paper provides a brief summary of the synthesis methods and electrochemical performances of micro-spherical $LiFePO_4$ having high volumetric energy density.

NanoBio-Technology for Practical Implementation in Drug Discovery

  • 민달희
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.83-83
    • /
    • 2013
  • To date, various nanobiotechnologicalapproaches for biosensors and drug development have been explosively studied. Despite of successful demonstrations, the new technologies hardly enjoyed routine applications in practical nanobiomedicine. Here, researchers trained at the interface of basic sciences and engineering are expected to play critical roles. In this tutorial, I will introduce recent studies which harness graphene derivatives for developing bioanalytical platforms to quantitatively analyze various enzyme activities and biomarkers. The systems rely on attractive interaction between graphene oxide and nucleic acids or phospholipids. Recently, one of the graphene-based bioassay system was applied to anti-viral drug screening and potent hit compounds were identified to treat hepatitis C. This study clearly shows that a new nanobio-technology can be routinely implemented in drug discovery, providing many advantages over conventional methods.

  • PDF

전기방사를 이용한 슈퍼캐퍼시터용 금속산화물/탄소나노섬유 복합체 (Electrospun Metal Oxide/Carbon Nanofiber Composite Electrode for Supercapacitor Application)

  • 양갑승;김보혜
    • 공업화학
    • /
    • 제26권3호
    • /
    • pp.239-246
    • /
    • 2015
  • 나노 탄소재료를 복합화하면 기존 재료의 특성을 유지하면서 그 효율을 극대화할 수 있다. 여기에 이종원소를 부가하면 전기화학적인 특성이 디자인되므로, 나노 탄소재료의 복합화를 통해 한 종류의 나노 재료로부터 여러 강점을 얻을 수 있다. 특히 탄소나노섬유와 금속산화물을 복합화하면 탄소나노섬유의 전기이중층 뿐만 아니라 금속산화물의 산화 환원 반응을 이용하여 비축전 용량, 고율 특성, 수명 특성이 향상되고 높은 수준의 출력밀도가 유지되는 고용량 슈퍼 캐퍼시터용 전극 소재를 개발할 수 있다. 본 총설에서는 탄소의 고출력특성과 금속산화물의 고에너지 특성이 동시에 발현되는 금속산화물계 탄소나노섬유복합체의 제법과 응용에 대한 최신연구를 다루도록 하겠다.

Functional Nannomaterials Based on Nanoporous Template

  • 김진곤;양승윤;변진석;전금혜;조아라
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.7.1-7.1
    • /
    • 2011
  • Nanoporous templates have been widely used for the development of new functional nanostructured materials suitable for electronics, optics, magnetism, and energy storage materials. We have prepared nanoporous templates by using thin films of mixtures of polystyrene-block-poly (methyl methacrylate) (PS-b-PMMA) and PMMA homopolymers. These templates have cylindrical nanoholes spanning the entire thickness of the film. Some applications of nanoporous templates are introduced: a) anti-reflective coating, b) the preparation of conducting polymer nanowires of poly (pyrrole), poly (3,4-ethylenedioxy-thiopene) onto a glass coated with indium-tin-oxide, and c) the separation membranes for biomaterials. We found that when the pore fraction of nanoholes in the film was ~0.68, almost zero reflectance at a specific wavelength, which can be changed with film thickness, was achieved at visible wavelengths Furthermore, ultra high density array of conducting nanowires was successfully prepared onto various substrates including flexible polymer. Due to highly alignment of polymer chain along the nanowire direction, the conductivity was much increased. Furthermore, these nanoporous films were found to be very effective for the separation of human Rhinovirus type 14 (HRV 14), major pathogen of a common cold in humans, from the buffer solution. We also found that when the pore size was effectively controlled down to 6 nm, a single file diffusion was observed.

  • PDF

포화 컬럼실험에서 이온강도 변화 및 유기물질 출현에 의한 PVP로 코팅된 은나노 입자의 거동 연구 (Transport behavior of PVP (polyvinylpyrrolidone) - AgNPs in saturated packed column: Effect of ionic strength and HA)

  • 허지용;한종훈;허남국
    • 상하수도학회지
    • /
    • 제30권3호
    • /
    • pp.263-270
    • /
    • 2016
  • Recent Engineered nanoparticles were increasingly exposed to environmental system with the wide application and production of nanomaterials, concerns are increasing about their environmental risk to soil and groundwater system. In order to assess the transport behavior of silver nanoparticles (AgNPs), a saturated packed column experiments were examined. Inductively coupled plasma-mass spectrometry and a DLS detector was used for concentration and size measurement of AgNPs. The column experiment results showed that solution chemistry had a considerable temporal deposition of AgNPs on the porous media of solid glass beads. In column experiment, comparable mobility improvement of AgNPs were observed by changing solution chemistry conditions from salts (in both NaCl and $CaCl_2$ solutions) to DI conditions, but in much lower ionic strength (IS) with $CaCl_2$. Additionally, the fitted parameters with two-site kinetic attachment model form the experimental breakthrough curves (BTCs) were associated that the retention rates of the AgNPs aggregates were enhanced with increasing IS under both NaCl and $CaCl_2$ solutions.

Low temperature wet-chemical synthesis of spherical hydroxyapatite nanoparticles and their in situ cytotoxicity study

  • Mondal, Sudip;Dey, Apurba;Pal, Umapada
    • Advances in nano research
    • /
    • 제4권4호
    • /
    • pp.295-307
    • /
    • 2016
  • The present research work reports a low temperature ($40^{\circ}C$) chemical precipitation technique for synthesizing hydroxyapatite (HAp) nanoparticles of spherical morphology through a simple reaction of calcium nitrate tetrahydrate and di-ammonium hydrogen phosphate at pH 11. The crystallinity of the single-phase nanoparticles could be improved by calcinating at $600^{\circ}C$ in air. Thermogravimetric and differential thermal analysis (TG-DTA) revealed the synthesized HAp is stable up to $1200^{\circ}C$. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) studies confirmed the formation of spherical nanoparticles with average size of $23.15{\pm}2.56nm$ and Ca/P ratio of 1.70. Brunauer-Emmett-Teller (BET) isotherm of the nanoparticles revealed their porous structure with average pore size of about 24.47 nm and average surface area of $78.4m2g^{-1}$. Fourier transform infrared spectroscopy (FTIR) was used to confirm the formation of P-O, OH, C-O chemical bonds. Cytotoxicity and MTT assay on MG63 osteogenic cell lines revealed nontoxic bioactive nature of the synthesized HAp nanoparticles.

Nanomaterials Research Using Quantum Beam Technology

  • Kishimoto, Naoki;Kitazawa, Hideaki;Takeda, Yoshihiko
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.7-7
    • /
    • 2011
  • Quantum beam technology has been expected to develop breakthroughs for nanotechnology during the third basic plan of science and technology (2006~2010). Recently, Green- or Life Innovations has taken over the national interests in the fourth basic science and technology plan (2011~2015). The NIMS (National Institute for Materials Science) has been conducting the corresponding mid-term research plans, as well as other national projects, such as nano-Green project (Global Research for Environment and Energy based on Nanomaterials science). In this lecture, the research trends in Japan and NIMS are firstly reviewed, and the typical achievements are highlighted over key nanotechnology fields. As one of the key nanotechnologies, the quantum beam research in NIMS focused on synchrotron radiation, neutron beams and ion/atom beams, having complementary attributes. The facilities used are SPring-8, nuclear reactor JRR-3, pulsed neutron source J-PARC and ion-laser-combined beams as well as excited atomic beams. Materials studied are typically fuel cell materials, superconducting/magnetic/multi-ferroic materials, quasicrystals, thermoelectric materials, precipitation-hardened steels, nanoparticle-dispersed materials. Here, we introduce a few topics of neutron scattering and ion beam nanofabrication. For neutron powder diffraction, the NIMS has developed multi-purpose pattern fitting software, post RIETAN2000. An ionic conductor, doped Pr2NiO4, which is a candidate for fuel-cell material, was analyzed by neutron powder diffraction with the software developed. The nuclear-density distribution derived revealed the two-dimensional network of the diffusion paths of oxygen ions at high temperatures. Using the high sensitivity of neutron beams for light elements, hydrogen states in a precipitation-strengthened steel were successfully evaluated. The small-angle neutron scattering (SANS) demonstrated the sensitive detection of hydrogen atoms trapped at the interfaces of nano-sized NbC. This result provides evidence for hydrogen embrittlement due to trapped hydrogen at precipitates. The ion beam technology can give novel functionality on a nano-scale and is targeting applications in plasmonics, ultra-fast optical communications, high-density recording and bio-patterning. The technologies developed are an ion-and-laser combined irradiation method for spatial control of nanoparticles, and a nano-masked ion irradiation method for patterning. Furthermore, we succeeded in implanting a wide-area nanopattern using nano-masks of anodic porous alumina. The patterning of ion implantation will be further applied for controlling protein adhesivity of biopolymers. It has thus been demonstrated that the quantum beam-based nanotechnology will lead the innovations both for nano-characterization and nano-fabrication.

  • PDF