• Title/Summary/Keyword: Porous nanomaterials

Search Result 27, Processing Time 0.024 seconds

Microstructural Evolution of Aluminum Nitride - Yttrium Aluminum Garnet Composite Coatings by Plasma Spraying from Different Feedstock Powders (Aluminum Nitride - Yttrium Aluminum Garnet 분말 특성과 플라즈마 용사 코팅층의 미세조직)

  • So, Woong-Sub;Baik, Kyeong-Ho
    • Korean Journal of Materials Research
    • /
    • v.21 no.2
    • /
    • pp.106-110
    • /
    • 2011
  • A high thermal conductive AlN composite coating is attractive in thermal management applications. In this study, AlN-YAG composite coatings were manufactured by atmospheric plasma spraying from two different powders: spray-dried and plasma-treated. The mixture of both AlN and YAG was first mechanically alloyed and then spray-dried to obtain an agglomerated powder. The spray-dried powder was primarily spherical in shape and composed of an agglomerate of primary particles. The decomposition of AlN was pronounced at elevated temperatures due to the porous nature of the spray-dried powder, and was completely eliminated in nitrogen environment. A highly spherical, dense AlN-YAG composite powder was synthesized by plasma alloying and spheroidization (PAS) in an inert gas environment. The AlN-YAG coatings consisted of irregular-shaped, crystalline AlN particles embedded in amorphous YAG phase, indicating solid deposition of AlN and liquid deposition of YAG. The PAS-processed powder produced a lower-porosity and higher-hardness AlN-YAG coating due to a greater degree of melting in the plasma jet, compared to that of the spray-dried powder. The amorphization of the YAG matrix was evidence of melting degree of feedstock powder in flight because a fully molten YAG droplet formed an amorphous phase during splat quenching.

Synthesis of Core-Shell Silica Nanoparticles with Hierarchically Bimodal Pore Structures

  • Yun, Seok-Bon;Park, Dae-Geun;Yun, Wan-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.467-467
    • /
    • 2011
  • Reflecting the growing importance of nanomaterials in science and technology, controlling the porosity combined with well-defined structural properties has been an ever-demanding pursuit in the related fields of frontier researches. A number of reports have focused on the synthesis of various nanoporous materials so far and, recently, the nanomaterials with multimodal porosity are getting an emerging importance due to their improved material properties compared with the mono porous materials. However, most of those materials are obtained in bulk phases while the spherical nanoparticles are one of the most practical platforms in a great number of applications. Here, we report on the synthesis of the core-shell silica nanoparticles with double mesoporous shells (DMSs). The DMS nsnoparticles are spherical and monodispersive and have two different mesoporous shells, i.e., the bimodal porosity. It is the first example of the core-shell silica nanoparticles with the different mesopores coexisting in the individual nanoparticles. Furthermore, the carbon and silica hollow capsules were also fabricated via a serial replication process.

  • PDF

Technology Trends in Fabrication of Nanostructures of Metal Oxides by Anodization and Their Applications (양극산화 기술을 이용한 금속산화물 나노구조 제조 및 응용 동향)

  • Choi, Jinsub;Lee, Jae Kwang;Lim, Jae Hoon;Kim, Sung Joong
    • Applied Chemistry for Engineering
    • /
    • v.19 no.3
    • /
    • pp.249-258
    • /
    • 2008
  • Nanoporous alumina with highly ordered pore arrays, which is prepared based on electrochemical anodization under the controlled conditions, has attracted great attention due to the variety of its applications. In case of porous alumina, the manipulation of nanoporous structures under different electrochemical conditions and their formation mechanisms have been studied for a long time. Recently, its principles have been applied to other valve metals. Especially, there have been a big success in the preparation of titania nanotubes via the anodization of titanium. In this paper, we review the anodization of aluminum and recent trends in anodization of Ti and other valve metals based on the principles of aluminum anodization.

Fire-Protective Coating for Polymer Construction Materials using Two-dimensional Nanomaterials (2차원 나노소재를 활용한 고분자 건축자재의 난연코팅기술 개발)

  • Kim, Hanim
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.183-190
    • /
    • 2024
  • An environmentally-friendly nanocoating method that effectively adds flame retardant(FR) and gas shielding properties to combustible polymeric construction materials such as flexible polyurethane (PU) foam was studied. Naturally-driven two-dimensional(2D) nanomaterials such as graphene oxide (GO) can exhibit liquid crystalline (LC) properties in aqueous solutions, enabling uniform coatings on the various substrates including 3D-porous foams. LC phase-assisted coating serves as 3D-scaffold, facilitating the introduction of small molecules having antioxidant capabilities such as dopamine which is to form uniformly stacked FR coating. Additionally, the structural characteristics of the 2D-materials can effectively hinder the migration of toxic gases and flammable substances in the gas phase generated during combustion. This LC phase flame retardant coating technology could be a new approach to provide environmentally friendly and effective flame retardant and gas barrier properties to various types of polymeric materials.

Highly Sensitive Gas Sensors Based on Nanostructured $TiO_2$ Thin Films

  • Jang, Ho-Won;Mun, Hui-Gyu;Kim, Do-Hong;Sim, Yeong-Seok;Yun, Seok-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.16.1-16.1
    • /
    • 2011
  • $TiO_2$ is a promising material for gas sensors. To achieve high sensitivities, the material should exhibit a large surface-to-volume ratio and possess the high accessibility of the gas molecules to the surface. Accordingly, a wide variety of porous $TiO_2$ nanomaterials synthesized by wet-chemical methods have been reported for gas sensor applications. Nonetheless, achieving the large-area uniformity and comparability with well-established semiconductor production processes of the methods is still challenging. An alternative method is soft-templating which utilizes nanostructured inorganic or organic materials as sacrificial templates for the preparation of porous materials. Fabrication of macroporous $TiO_2$ films and hollow $TiO_2$ tubes by soft-templating and their gas sensing applications have been reported recently. In these porous materials composed of assemblies of individual micro/nanostructures, the form of links or necks between individual micro/nanostructures is a critical factor to determine gas sensing properties of the material. However, a systematic study to clarify the role of links between individual micro/nanostructures in gas sensing properties of a porous metal oxide matrix is thoroughly lacking. In this work, we have demonstrated a fabrication method to prepare highly-ordered, embossed $TiO_2$ films composed of anatase $TiO_2$ hollow hemispheres via soft-templating using polystyrene beads. The form of links between hollow hemispheres could be controlled by $O_2$ plasma etching on the bead templates. This approach reveals the strong correlation of gas sensitivity with the form of the links. Our experimental results highlight that not only the surface-to-volume ratio of an ensemble material composed of individual micro/nanostructures but also the links between individual micro/nanostructures play a critical role in evaluating the sensing properties of the material. In addition to this general finding, the facileness, large-scale productivity, and compatability with semiconductor production process of the proposed fabrication method promise applications of the embossed $TiO_2$ films to high-quality sensors.

  • PDF

Flexible Energy Harvesting Device Based on Porous Piezoelectric Sponge (다공성 압전 스펀지를 이용한 플렉서블 에너지 하베스팅 소자 개발)

  • Dong Hun, Heo;Dong Yeol, Hyeon;Sung Cheol, Park;Kwi-Il, Park
    • Korean Journal of Materials Research
    • /
    • v.32 no.11
    • /
    • pp.508-514
    • /
    • 2022
  • Piezoelectric composite films which are enabled by inorganic piezoelectric nanomaterials-embedded polymer, have attracted enormous attention as a sustainable power source for low powered electronics, because of their ease of fabrication and flexible nature. However, the absorption of applied stress by the soft polymeric matrices is a major issue that must be solved to expand the fields of piezoelectric composite applications. Herein, a flexible and porous piezoelectric composite (piezoelectric sponge) comprised of BaTiO3 nanoparticles and polydimethylsiloxane was developed using template method to enhance the energy conversion efficiency by minimizing the stress that vanishes into the polymer matrix. In the porous structure, effective stress transfer can occur between the piezoelectric active materials in compression mode due to direct contact between the ceramic particles embedded in the pore-polymer interface. The piezoelectric sponge with 30 wt% of BaTiO3 particles generated an open-circuit voltage of ~12 V and a short-circuit current of ~150 nA. A finite element method-based simulation was conducted to theoretically back up that the piezoelectric output performance was effectively improved by introducing the sponge structure. Furthermore, to demonstrate the feasibility of pressure detecting applications using the BaTiO3 particles-embedded piezoelectric sponge, the composite was arranged in a 3 × 3 array and integrated into a single pressure sensor. The fabricated sensor array successfully detected the shape of the applied pressure. This work can provide a cost-effective, biocompatible, and structural strategy for realizing piezoelectric composite-based energy harvesters and self-powered sensors with improved energy conversion efficiency.

The Synthesis and Electrochemical Performance of Microspherical Porous LiFePO4/C with High Tap Density

  • Cho, Min-Young;Park, Sun-Min;Kim, Kwang-Bum;Lee, Jae-Won;Roh, Kwang Chul
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.135-142
    • /
    • 2012
  • Over the past few years, $LiFePO_4$ has been actively studied as a cathode material for lithium-ion batteries because of its advantageous properties such as high theoretical capacity, good cycle life, and high thermal stability. However, it does not have a very good power capability owing to the low lithium-ion diffusivity and poor electronic conductivity. Reduction in particle size of $LiFePO_4$ to the scale of nanometers has been found to dramatically enhance the above properties, according to many earlier reports. However, because of the intrinsically low tap density of nanomaterials, it is difficult to commercialize this method. Many studies are being carried out to improve the volumetric energy density of this material and many methods have been reported so far. This paper provides a brief summary of the synthesis methods and electrochemical performances of micro-spherical $LiFePO_4$ having high volumetric energy density.

NanoBio-Technology for Practical Implementation in Drug Discovery

  • Min, Dal-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.83-83
    • /
    • 2013
  • To date, various nanobiotechnologicalapproaches for biosensors and drug development have been explosively studied. Despite of successful demonstrations, the new technologies hardly enjoyed routine applications in practical nanobiomedicine. Here, researchers trained at the interface of basic sciences and engineering are expected to play critical roles. In this tutorial, I will introduce recent studies which harness graphene derivatives for developing bioanalytical platforms to quantitatively analyze various enzyme activities and biomarkers. The systems rely on attractive interaction between graphene oxide and nucleic acids or phospholipids. Recently, one of the graphene-based bioassay system was applied to anti-viral drug screening and potent hit compounds were identified to treat hepatitis C. This study clearly shows that a new nanobio-technology can be routinely implemented in drug discovery, providing many advantages over conventional methods.

  • PDF

Development of Highly Efficient Oil-Water Separation Materials Utilizing the Self-Bonding and Microstructuring Characteristics of Aluminum Nitride Nanopowders (질화알루미늄 나노분말의 자가 접착과 미세구조화 특성을 활용한 고효율 유수분리 소재 개발)

  • Heon-Ju Choi;Handong Cho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.601-607
    • /
    • 2024
  • The discharge of oily wastewater into water bodies and soil poses a serious hazard to the environment and public health. Various conventional techniques have been employed to treat oil-water mixtures and emulsions; Unfortunately, these approaches are frequently expensive, time-consuming, and unsatisfactory outcomes. Porous materials and adsorbents are commonly used for purification, but their use is limited by low separation efficiencies and the risk of secondary contamination. Recent advancements in nanotechnology have driven the development of innovative materials and technologies for oil-contaminated wastewater treatment. Nanomaterials can offer enhanced oil-water separation properties due to their high surface area and tunable surface chemistry. The fabrication of nanofiber membranes with precise pore sizes and surface properties can further improve separation efficiency. Notably, novel technologies have emerged utilizing nanomaterials with special surface wetting properties, such as superhydrophobicity, to selectively separate oil from oil-water mixtures or emulsions. These special wetting surfaces are promising for high-efficiency oil separation in emulsions and allow the use of materials with relatively large pores, enhancing throughput and separation efficiency. In this study, we introduce a facile and scalable method for fabrication of superhydrophobic-superoleophilic felt fabrics for oil/water mixture and emulsion separation. AlN nanopowders are hydrolyzed to create the desired microstructures, which firmly adhere to the fabric surface without the need for a binder resin, enabling specialized wetting properties. This approach is applicable regardless of the material's size and shape, enabling efficient separation of oil and water from oil-water mixtures and emulsions. The oil-water separation materials proposed in this study exhibit low cost, high scalability, and efficiency, demonstrating their potential for broad industrial applications.

Electrospun Metal Oxide/Carbon Nanofiber Composite Electrode for Supercapacitor Application (전기방사를 이용한 슈퍼캐퍼시터용 금속산화물/탄소나노섬유 복합체)

  • Yang, Kap Seung;Kim, Bo Hye
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.239-246
    • /
    • 2015
  • The hybridization of carbon nano-materials enhances the efficiency of each function of the resulting structure or composites. Also, the addition of non-carbon elements to nanomaterials modifies the electrochemical properties. Electrodes combining porous carbon nanofibers (CNFs) and metal oxides benefit from the combination of the double-layer capacitance of the CNFs and the pseudocapacitive character associated with the surface redox-type reactions. Consequently, they demonstrate superior supercapacitor performance in terms of high capacitance, high energy/power efficiency and high rate capability. This paper presents a comprehensive review of the latest advances made in the development and application of various metal oxide/CNF composites (CNFCs) to supercapacitor electrodes.