• Title/Summary/Keyword: Porous model

Search Result 739, Processing Time 0.03 seconds

Studies on the Extraction Rate of Oil from Sardine, Sardinops melanosticta (정어리 지질의 추출속도에 관한 연구)

  • YANG Hyun-Seok;LEE Keun-Tai;BYUN Dae-Seok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.1
    • /
    • pp.40-46
    • /
    • 1984
  • The extraction ratio of oil using solvent from the muscle of sardine, Sardinops melanosticta, was studied. The results were critically evaluated in the light of the theory of oil diffusion in a porous solid model. In addition the effect of temperature and moisture on the extraction rate was examined. Sardine muscle was prepared in a manner to meet the conditions required by the diffusion theory from Fick's law. The results of the model were well coincidenced to the theory derived from Fick's law. Diffusion constants at the direction to muscle fiber($D_1$) and at direction perpendicular to fiber($D_2=D_3$) when extracted at $45^{\circ}C$ were $8.16{\times}10^{-8}cm^2/sec\;and\;4.12{\times}10^{-8}cm^2/sec$, respectivly. The extraction rate was linearly propotional to absolute temperature(T) by eleventh power under the constant condition of moisture contents and muscle size. A comparison of the experiments with the highest($74.22\%$) and the lowest ($32.48\%$) moisture indicated that difference of $1\%$ in moisture contents caused to change the slope(K) of the extraction curve $0.53{\times}10^{-6}sec^{-1}$ approximately.

  • PDF

Nonlinear Irregular Waves-current Interaction on Flow Fields with Wave Breaking around Permeable Submerged Breakwater (투과성잠제 주변에서 쇄파를 동반한 불규칙파-흐름장의 상호작용)

  • Lee, Kwang-Ho;Bae, Ju-Hyun;An, Sung-Wook;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.2
    • /
    • pp.39-50
    • /
    • 2018
  • In this study, the nonlinear interaction of irregular waves with wave breaking and currents around permeable submerged breakwater was investigated with the aid of olaFlow model which is open source CFD software published under the GPL license. The irregular wave performance of olaFlow applied in this study was verified by comparing and evaluating the target frequency spectrum and the generated frequency spectrum for applicability to irregular waves. Based on the applicability of this numerical model to irregular wave fields, in the coexistence fields of irregular waves and currents, the characteristics of wave height, frequency spectrum, breaking waves, averaged velocity and turbulent kinetic energy around porous submerged breakwater with the respect to the beach type and current direction versus wave propagation were carefully investigated. The numerical results revealed that the shape of wave breaking on the crown of the submerged breakwater and the formation of the mean flow velocity around the structure depend greatly on the current directions and the type of the beach. In addition, it was found that the wave height fluctuation due to the current direction with respect to the wave propagation is closely related to the turbulent kinetic energy.

Analysis of the Pathways and Travel Times for Groundwater in Volcanic Rock Using 3D Fracture Network (화산암질 암반에서 3차원 균열망 모델을 이용한 지하수 유동경로 및 유동시간 해석)

  • 박병윤;김경수;김천수;배대석;이희근
    • Tunnel and Underground Space
    • /
    • v.11 no.1
    • /
    • pp.42-58
    • /
    • 2001
  • In order to protect the environment from waste disposal activities, the prediction of the flux and flow paths of the contaminants from underground facilities should be assessed as accurately as possible. Especially, the prediction of the pathways and travel times of the nuclides from high level radioactive wastes in a deep repository to biosphere is one of the primary tasks for assessing the ultimate safety and performance of the repository. Since the contaminants are mainly transported with groundwater along the discontinuities developed within rock mass, the characteristics of groundwater flow through discontinuities is important for the prediction of contaminant fates as well as safety assessment of a repository. In this study, the actual fracture network could be effectively generated based on in situ data by separating geometric parameter and hydraulic parameter. The calculated anisotropic hydraulic conductivity was applied to a 3D porous medium model to calculate the path flow and travel time of the large studied area with the consideration of the complex topology in the area. Using the model, the pathways and travel times for groundwater were analyzed. From this study, it was concluded that the suggested techniques and procedures for predicting the pathways and travel times of groundwater from underground facilities to biosphere is acceptable and those can be applied to the safety assessment of a repository for radioactive wastes.

  • PDF

Program Development to Evaluate Permeability Tensor of Fractured Media Using Borehole Televiewer and BIPS Images and an Assessment of Feasibility of the Program on Field Sites (시추공 텔리뷰어 및 BIPS의 영상자료 해석을 통한 파쇄매질의 투수율텐서 계산 프로그램 개발 및 현장 적용성 평가)

  • 구민호;이동우;원경식
    • The Journal of Engineering Geology
    • /
    • v.9 no.3
    • /
    • pp.187-206
    • /
    • 1999
  • A computer program to numerically predict the permeability tensor of fractured rocks is developed using information on discontinuities which Borehole Televiewer and Borehole Image Processing System (BIPS) provide. It uses orientation and thickness of a large number of discontinuities as input data, and calculates relative values of the 9 elements consisting of the permeability tensor by the formulation based on the EPM model, which regards a fractured rock as a homogeneous, anisotropic porous medium. In order to assess feasibility of the program on field sites, the numerically calculated tensor was obtained using BIPS logs and compared to the results of pumping test conducted in the boreholes of the study area. The degree of horizontal anisotropy and the direction of maximum horizontal permeability are 2.8 and $N77^{\circ}CE$, respectively, determined from the pumping test data, while 3.0 and $N63^{\circ}CE$ from the numerical analysis by the developed program. Disagreement between two analyses, especially for the principal direction of anisotropy, seems to be caused by problems in analyzing the pumping test data, in applicability of the EPM model and the cubic law, and in simplified relationship between the crack size and aperture. Aside from these problems, consideration of hydraulic parameters characterizing roughness of cracks and infilling materials seems to be required to improve feasibility of the proposed program. Three-dimensional assessment of its feasibility on field sites can be accomplished by conducting a series of cross-hole packer tests consisting of an injecting well and a monitoring well at close distance.

  • PDF

A STUDY ABOUT EARLY OSTEOCONDUCTIVITY OF POROUS ALLOPLASTIC CARBONAPATITE AND ANORGANIC BOVINE XENOGRAFT IN CANINE MAIXLLIARY AUGMENTATION MODEL (탄산아파타이트로 된 인공골과 소뼈에서 유래한 무기질 골의 초기 골전도에 대한 연구)

  • Kim, Do-Kyun;Cho, Tae-Hyung;Song, Yun-Mi;Pan, Hui;Lee, Su-Yeon;Jin, Im-Geon;Kim, In-Sook;Hong, Kug-Sun;Hwang, Soon-Jung
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.29 no.6
    • /
    • pp.485-493
    • /
    • 2007
  • Introduction: Although several types of calcium-phosphate coumpound have been frequently applied to osseous defects at maxillofacial area for many years, there is a controversy about its efficiency on bone conductivity comprared to xenograft bone substitute. Alloplastic carbonapatite has been introduced to improve disadvantages of hydroxyapatite and to mimic natural bone containing carbon elements. However, a preclinical study about its efficiency of osteoconductivity has not been reported. This study was performed to evaluate the early osteoconductive potential of synthetic carbonapatite with multiple pores relative to anorganic bovine xenograft. Materials and methods: Total 5 beagle dogs were used for maxillary augmentation model. The control (anorganic bovine xenograft) and experimental groups (synthetic carbonapatite) were randomly distributed in the mouth split design. After bone graft, all animals were sacrificed 4 weeks after surgery. Histological specimens with Masson Trichrome staining were made and histomorphometrically analysed with image analyser. The statistical analysis was performed using paired t-test. Results: In both groups, all animals had no complications. The experimental group showed relatively much new bone formation around and along the bone substitutes, whereas it was clearly reduced in the control group. The ratios of new bone area to total area, to material area and to the residual area excluding materials were higher in the experimental group ($0.13{\pm}0.03,\;0.40{\pm}0.13,\;0.20{\pm}0.06$ respectively) than in the control group ($0.01{\pm}0.01,\;0.03{\pm}0.02,\;0.03{\pm}0.03$, respectively). And the differences between both groups were statistically significant (p<0.001, <0.01, <0.01, respectively), while the ratio of material area to total area in two groups was not significant. Conclusion: Carbonapatite showed a high osteoconductivity in the early stage of bone healing compared to bovine derived anorganic bone substitute. This study suggests that this bone materials can be applied as a reliable bone substitute in the clinical treatment.

Numerical Study on Surface Air-Oil Heat Exchanger for Aero Gas-Turbine Engine Using One-Dimensional Flow and Thermal Network Model (항공기 가스터빈용 오일쿨러 해석을 위한 1 차원 열유동 네트워크 수치적 모델 개발 및 연구)

  • Kim, Young Jin;Kim, Minsung;Ha, Man Yeong;Min, June Kee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.11
    • /
    • pp.915-924
    • /
    • 2014
  • In an aero gas-turbine engine, a surface air-oil heat exchanger (SAOHE) is used to cool the oil system for the gearboxes and electric generators. The SAOHE is installed inside the fan casing of the engine in order to dissipate the heat from the oil system into the bypass duct stream. The purpose of this study was to develop an effective numerical method for designing an SAOHE for an aero gas-turbine engine. A two-dimensional model using a porous medium was developed to evaluate the aero-thermal performance of the fins of the heat exchanger, and a one-dimensional flow and thermal network program was developed to save time and cost in the evaluation of the heat exchanger performance. Using this network program, the pressure drop and heat transfer performance of the heat exchanger were predicted, and the results were compared with two-dimensional computational fluid dynamics results and experiment data for validation.

Development of Homogenization Data-based Transfer Learning Framework to Predict Effective Mechanical Properties and Thermal Conductivity of Foam Structures (폼 구조의 유효 기계적 물성 및 열전도율 예측을 위한 균질화 데이터 기반 전이학습 프레임워크의 개발)

  • Wonjoo Lee;Suhan Kim;Hyun Jong Sim;Ju Ho Lee;Byeong Hyeok An;Yu Jung Kim;Sang Yung Jeong;Hyunseong Shin
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.205-210
    • /
    • 2023
  • In this study, we developed a transfer learning framework based on homogenization data for efficient prediction of the effective mechanical properties and thermal conductivity of cellular foam structures. Mean-field homogenization (MFH) based on the Eshelby's tensor allows for efficient prediction of properties in porous structures including ellipsoidal inclusions, but accurately predicting the properties of cellular foam structures is challenging. On the other hand, finite element homogenization (FEH) is more accurate but comes with relatively high computational cost. In this paper, we propose a data-driven transfer learning framework that combines the advantages of mean-field homogenization and finite element homogenization. Specifically, we generate a large amount of mean-field homogenization data to build a pre-trained model, and then fine-tune it using a relatively small amount of finite element homogenization data. Numerical examples were conducted to validate the proposed framework and verify the accuracy of the analysis. The results of this study are expected to be applicable to the analysis of materials with various foam structures.

Relation Between Shrinkage and Humidity on Lightweight Concrete and Normal Concrete by Water-Cement Ratio (물-시멘트비에 따른 경량콘크리트 및 일반콘크리트의 수축과 습도와의 관계)

  • Lee, Chang Soo;Park, Jong Hyok;Jung, Bong Jo;Choi, Young Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.385-393
    • /
    • 2009
  • This study grasped the relationship between relative humidity in concrete and concrete shrinkage followed by pre-absorbed water of porous lightweight aggregates through measurements of concrete shrinkage and humidity and comparisons with established research results. It was showed that shrinkage reduction effect of lightweight concrete is 36% at 7 days early ages and 25% at 180 days long-term ages when water-binder ratio is 0.3. It also showed that shrinkage reduction effect is 19% at 7 days and 16% at 180 days when water-binder ratio is 0.4 and 37%, 32% when water-binder ratio is 0.5. The moisture supply effect of lightweight aggregates was remarkable at early age within 7~10 days irrespective of water-binder ratio. In case of waterbinder ratio is 0.3, the relationship between shrinkage and internal humidity of concrete has been underestimated regardless of applied existing model type and in case of water-binder ratio is 0.4, 0.5, measurement values are relatively similar with existing model equations. Finally this study did regression analyses about the relation among the humidity change and the shrinkage strain as a high-degree polynomial and derived parameters that can connect moisture movement analysis with differential shrinkage analysis in case of considering relative humidity at the time by moisture movement analysis of concrete.

Numerical Modelling for the Dilation Flow of Gas in a Bentonite Buffer Material: DECOVALEX-2019 Task A (벤토나이트 완충재에서의 기체 팽창 흐름 수치 모델링: DECOVALEX-2019 Task A)

  • Lee, Jaewon;Lee, Changsoo;Kim, Geon Young
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.382-393
    • /
    • 2020
  • The engineered barrier system of high-level radioactive waste disposal must maintain its performance in the long term, because it must play a role in slowing the rate of leakage to the surrounding rock mass even if a radionuclide leak occurs from the canister. In particular, it is very important to clarify gas dilation flow phenomenon clearly, that occurs only in a medium containing a large amount of clay material such as a bentonite buffer, which can affect the long-term performance of the bentonite buffer. Accordingly, DECOVALEX-2019 Task A was conducted to identify the hydraulic-mechanical mechanism for the dilation flow, and to develop and verify a new numerical analysis technique for quantitative evaluation of gas migration phenomena. In this study, based on the conventional two-phase flow and mechanical behavior with effective stresses in the porous medium, the hydraulic-mechanical model was developed considering the concept of damage to simulate the formation of micro-cracks and expansion of the medium and the corresponding change in the hydraulic properties. Model verification and validation were conducted through comparison with the results of 1D and 3D gas injection tests. As a result of the numerical analysis, it was possible to model the sudden increase in pore water pressure, stress, gas inflow and outflow rate due to the dilation flow induced by gas pressure, however, the influence of the hydraulic-mechanical interaction was underestimated. Nevertheless, this study can provide a preliminary model for the dilation flow and a basis for developing an advanced model. It is believed that it can be used not only for analyzing data from laboratory and field tests, but also for long-term performance evaluation of the high-level radioactive waste disposal system.

Controlled Release of Doxazosin in Multi-layered Pellet Using Polymer Blending (고분자 블렌딩을 이용하여 제조된 독사조신 다중층 펠렛의 약물방출제어)

  • Youn, Ju-Yong;Park, Sang-Wook;Lee, Soo-Young;Kim, Moon-Suk;Lee, Bong;Khang, Gil-Son;Lee, Hai-Bang
    • Polymer(Korea)
    • /
    • v.32 no.4
    • /
    • pp.322-327
    • /
    • 2008
  • In this study, a multi-layered pellet was composed of a seed layer including a water-swellable agent and a drug layer containing doxazosin as a model drug, a porous membrane and a castor oil layer to control drug release. The pellet is prepared by a fluidized bed coating method. To confirm drug release from polymer blending in multi-layered pellet system, it is prepared by containing different ratio such as hydroxypropylmethylcellulose (HPMC) : ethyl cellulose (EC) in drug layer and cellulose acetate(CA) : Eudragit RS in membrane. Also, to confirm the effect of oil in drug release, castor oil is coated. As a result, we observed regularly spherical pellet with diameter of $1500{\mu}m$. Release pattern of drug is confirmed by dissolution tester in aqueous media. The more the ratio of EC in drug layer, CA in membrane, and castor oil layer in pellet, the less the drug release is observed. Formation and the amount of pores in membrane is observed by SEM.