• Title/Summary/Keyword: Porous medium model

Search Result 101, Processing Time 0.033 seconds

A Study on the Groundwater Flow in Fractured-Porous Media by Flow Resistance Theory (단열-다공암반에서 유동저항 이론을 이용한 지하수 유동 평가에 관한 연구)

  • Han Ji-Woong;Hwang Yong-Soo;Kang Chul-Hyung
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.231-238
    • /
    • 2005
  • On the basis of flow resistance theory the conceptual model and related mathematical descriptions is proposed for resistance modeling of groundwater flow in CPM(continuum Porous medium), DFN(discrete fracture network) and fractured-porous medium. The proposed model is developed on the basis of finite volume method assuming steady-state, constant density groundwater flow. The basic approach of the method is to evaluate inter-block flow resistance values for a staggered grid arrangement, i.e. fluxes are stored at cell walls and scalars at cell centers. The balance of forces, i.e. the Darcy law, is utilized for each control volume centered around the point where the velocity component is stored. The transmissivity (or permeability) at the interface is assumed to be the harmonic average of neighboring blocks. Flow resistance theory was utilized to relate the fluxes between the grid blocks with residual pressures. The flow within porous medium is described by three dimensional equations and that within an individual fracture is described by a two dimensional equivalent of the flow equations for a porous medium. Newly proposed models would contribute to develop flow simulation techniques with various matrix characteristics.

  • PDF

Application of Porous Medium Theory in Slope Stability Analysis (다공체 이론을 사용한 사면안정해석)

  • 서영교
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.2
    • /
    • pp.135-142
    • /
    • 2001
  • 사면안정해석을 위해 다공체(porous medium) 이론이 제시되었다. 다공체 이론은 간극수압, 토질입자 및 간극수의 상호작용을 포함하는 여러 가지 지반관련 문제의 이해에 있어 매우 중요하다. 이러한 상호작용은 토질강도 및 변형에 중요한 영향을 미친다. 압밀 예제로서 이러한 모델의 정확도를 첫째로 검증하였다. 사면안정해석에 있어서 토질의 응력 및 강도는 일반적인 구성모델을 포함한 비선형 유한요소해석을 사용하여 정확히 계산되었다. 사면안정해석은 한계상태를 표시하는 파괴면이 나타날 때까지 점차적인 중력의 증가로 실행되었다. 안전율은 증가시킨 중력과 실제사면 중력의 비로서 계산되었다. 제시된 사면 안정 해석 방법의 자세한 사항은 예제를 통하여 설명되었다.

  • PDF

An Investigation on Local Thermodynamic Equilibrium Assumption of Natural Convection in a Porous Medium (다공성 물질 안에서의 자연대류 현상에 대한 열역학적 국소평형상태 가정의 고찰)

  • Kim, In-Seon;Nam, Jin-Hyun;Kim, Charn-Jung
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.112-117
    • /
    • 2000
  • A numerical study on natural convection in a vertical square cavity filled with a porous medium is carried out with Brinkman-Forchheimer-extended Darcy flow model, and the validity of local thermodynamic equilibrium assumption is studied. The local thermodynamic equilibrium refers to the state in which a single temperature can be used to describe a heat transfer process in a multiphase system. With this assumption, the analysis is greatly simplified because only one equation is needed to describe the heat transfer process. But prior to using this assumption, it is necessary to know in what conditions the assumption can be used. The numerical results of this study reveal that large temperature difference between fluid phase and solid phase exists near wall region, paticularily when the convection becomes dominant over conduction. And the influence of flow parameters such as fluid Rayleigh number, fluid Prandtl number, dimensionless particle diameter and conductivity ratio are investigated.

  • PDF

Numerical Solution of Nonlinear Diffusion in One Dimensional Porous Medium Using Hybrid SOR Method

  • Jackel Vui Lung, Chew;Elayaraja, Aruchunan;Andang, Sunarto;Jumat, Sulaiman
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.4
    • /
    • pp.699-713
    • /
    • 2022
  • This paper proposes a hybrid successive over-relaxation iterative method for the numerical solution of a nonlinear diffusion in a one-dimensional porous medium. The considered mathematical model is discretized using a computational complexity reduction scheme called half-sweep finite differences. The local truncation error and the analysis of the stability of the scheme are discussed. The proposed iterative method, which uses explicit group technique and modified successive over-relaxation, is formulated systematically. This method improves the efficiency of obtaining the solution in terms of total iterations and program elapsed time. The accuracy of the proposed method, which is measured using the magnitude of absolute errors, is promising. Numerical convergence tests of the proposed method are also provided. Some numerical experiments are delivered using initial-boundary value problems to show the superiority of the proposed method against some existing numerical methods.

Hybrid medium model for conjugate heat transfer modeling in the core of sodium-cooled fast reactor

  • Wang, X.A.;Zhang, Dalin;Wang, Mingjun;Song, Ping;Wang, Shibao;Liang, Yu;Zhang, Yapei;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.708-720
    • /
    • 2020
  • Core-wide temperature distribution in sodium-cooled fast reactor plays a key role in its decay heat removal process, however the prediction for temperature distribution is quite complex due to the conjugate heat transfer between the assembly flow and the inter-wrapper flow. Hybrid medium model has been proposed for conjugate heat transfer modeling in the core. The core is modeled with a Realistic modeled inter-wrapper flow and hybrid medium modeled assembly flow. To validate present model, simulations for a three-assembly model were performed with Realistic modeling, traditional porous medium model and hybrid medium model, respectively. The influences of Uniform/Non-Uniform power distribution among assemblies and the Peclet number within the assembly flow have been considered. Compared to traditional porous medium model, present model shows a better agreement with in Realistic modeling prediction of the temperature distribution and the radial heat transfer between the inter-wrapper flow and the assembly flow.

Two-scale approaches for fracture in fluid-saturated porous media

  • de Borst, Rene;Rethore, Julien;Abellan, Marie-Angele
    • Interaction and multiscale mechanics
    • /
    • v.1 no.1
    • /
    • pp.83-101
    • /
    • 2008
  • A derivation is given of two-scale models that are able to describe deformation and flow in a fluid-saturated and progressively fracturing porous medium. From the micromechanics of the flow in the cavity, identities are derived that couple the local momentum and the mass balances to the governing equations for a fluid-saturated porous medium, which are assumed to hold on the macroscopic scale. By exploiting the partition-of-unity property of the finite element shape functions, the position and direction of the fractures are independent from the underlying discretization. The finite element equations are derived for this two-scale approach and integrated over time. The resulting discrete equations are nonlinear due to the cohesive crack model and the nonlinearity of the coupling terms. A consistent linearization is given for use within a Newton-Raphson iterative procedure. Finally, examples are given to show the versatility and the efficiency of the approach.

Heat and Mass Transfer in Highly Porous Media (고 다공성 물질에서 열 및 물질전달)

  • 이금배
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.685-693
    • /
    • 1990
  • The heat transfer coefficients were calculated numerically to see the effects of radiation around the porous medium put on the flat plate at a distance from the leading edge of flat plate for the two-dimensional laminar flows. To verify the analytical model developed and invoke the heat/mass transfer analogy, an experiment was carried out using naphthalene sublimation technique. From the effects of the wake, Sherwood number is maximum around the region where the porous medium is attached. The theoretical results correspond well with the experimental results at small Darcy number. Permeability of ceramic blocks used for experiment was also measured and the Forchheimer equation is applicable in our measurement range.

A study on thermo-elastic interactions in 2D porous media with-without energy dissipation

  • Alzahrani, Faris;Abbas, Ibrahim A.
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.523-531
    • /
    • 2021
  • The generalized thermoelastic analysis problem of a two-dimension porous medium with and without energy dissipation are obtained in the context of Green-Naghdi's (GNIII) model. The exact solutions are presented to obtain the studying fields due to the pulse heat flux that decay exponentially in the surface of porous media. By using Laplace and Fourier transform with the eigenvalues scheme, the physical quantities are analytically presented. The surface is shocked by thermal (pulse heat flux problems) and applying the traction free on its outer surfaces (mechanical boundary) through transport (diffusion) process of temperature to observe the analytical complete expression of the main physical fields. The change in volume fraction field, the variations of the displacement components, temperature and the components of stress are graphically presented. Suitable discussion and conclusions are presented.

Fractional order GL model on thermoelastic interaction in porous media due to pulse heat flux

  • Alzahrani, Faris S.;Abbas, Ibrahim A.
    • Geomechanics and Engineering
    • /
    • v.23 no.3
    • /
    • pp.217-225
    • /
    • 2020
  • In this paper, the thermoelastic interactions in a two-dimension porous body are studied. This problem is solved by using the Green and Lindsay (GL) generalized thermoelasticity model under fractional time derivative. The derived approaches are estimated. with numeral results which are applied to the porous mediums in simplifying geometrical. The bounding plane surface of the present half-space continuum is subjected to a pulse heat flux. We use the Laplace-Fourier transforms methods with the eigenvalues approach to solve the problem. The numerical solutions for the field functions are obtained numerically using the numerical Laplace inversion technique. The effects of the fractional parameter and the thermal relaxation times on the temperature field, the displacement field, the change in volume fraction field of voids distribution and the stress fields have been calculated and displayed graphically and the obtained results are discussed.

Electrochemical Ionic Mass Transfer Correlation in Fluid-Saturated Porous Layer

  • Cho, Eun Su
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.814-817
    • /
    • 2015
  • A new ionic mass transfer correlation is derived for the fluid-saturated, horizontal porous layer. Darcy-Forchheimer model is used to explain characteristics of fluid motion. Based on the microscales of turbulence a backbone mass transfer relation is derived as a function of the Darcy-Rayleigh number, $Ra_D$ and the porous medium Schmidt number, $Sc_p$. For the Darcy's limit of $Sc_p{\gg}Ra_D$, the Sherwood number, Sh is a function of $Ra_D$ only. However, for the region of high $Ra_D$, Sh can be related with $Ra_DSc_p$. Based on the present backbone equation and the electrochemical mass transfer experiments which are electro plating or electroless plating, the new ionic mass transfer correlation is suggested in the porous media.