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Application of Porous Medium Theory in Slope Stability Analysis
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Abstract

The porous medium theory is introduced for computing the stability analysis of slopes. Such models are important for many
geotechnical problems due to relavant interaction between interstitial pore fluid and soil skeleton, which can have significant
effects on soil strength behaviors. Consolidation example demonstrated the accuracy of the numerical model. In the slope
stability analysis, the soil stresses and strengths are computed accurately using inelastic finite element methods with general
constitutive models. In the slope analysis procedures, the gravitational loading on the slope monotonically increases until the
critical limit state instability mechanisms are developed. Slope stability factors are represented as the ratio of load magnitude
which first generates instability of the slope to the magnitude of the expected load. Further discussions are explained along with

the solved examples.

Keywords : Porous media model, Slope stability analysis, Finite element method, Soil plasticity model, Limit state
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1. Introduction

Porous materials such as soils consist of a solid skeleton
and voids or porosity which can contains various fluid and
air. When loads are applied to the porous medium, there is
an interaction between the deformation of'the soil skeleton
and fluid flow. Such theories were first developed by
Terzaghi(1950) and Biot(1962) for linear elastic and linear

visco-elastic porous materials. Some applications of the
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finite element method to the theory of elasto-plastic
mixtures have been reported. Among them, Prevost(1980)
and Borja(1986) developed the velocity (pressure)-displace-
ment formulation of fluid saturated soil mixtures. While
both formulations have their own advantages, a porous
medium treatment with a velocity formulation is utilized in
this work since it leads to homogeneous systems of finite
element equations. Whereas the preceding works(Smith,
1976) have utilized multi-phase continuum/FEM models to
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compute consolidation settlements of embankments without
concern for possible shear failure of the soil system.

The intention of this work is the application of porous
theory for the slope on saturated soil deposits. Using
classical methods and assumptions, the stability analysis of
such systems typically proceeds by assuming that the
saturated soil has a response behavior that is either
no-flow(fully undrained) or free-flow(fully drained) as
special cases of porous medium. Since the computed
stability factors associated with-these assumptions are
generally not close in value, the classical methods can leave
considerable uncertainty directly attributable to rate
dependent pore pressure diffusion effects. Methods of slope
stability analysis are thus needed to take into account with
the time scale and spatial distribution of pore pressure
diffusion occurring in the underlying saturated soil deposit.
The objective of this paper is therefore to extend the
preceding gravity increase finite element method for
stability analysis of earthen slope which was presented in
Swan and Seo(1999) using only total stress analysis, to
account for pore pressure effects using a coupled
pore-pressure and effective stress analysis.

While the proposed framework for slope/fembankment
/dam stability analysis generally can be employed with a
wide variety of soil models, the smooth elasto-plastic cap
model is employed in this work. The attractive aspects of the
cap model are its continuous and differentiable coupling
between shear strength and compressibility behaviors. The
details of cap models and the slope stability analysis

procedure will be described in the following.

2. Theory of Porous Medinum

2.1 Field Equations

The treatment of soils to be employed here is that of a
porous, granular solid skeletal continuum interacting with a
continuous pore fluid. For clarity and completeness of the
slope stability analysis framework, the basic mass and
momentum balance equations for both fluid and solid phases
of the soil are briefly developed below. A more extensive

development of these equations can be found in Provest
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(1980). In the following, the average intrinsic micro
densities of both the fluid and solid phases are denoted by

04 sWhere a= w denotes the fluid phase and o= s the
solid phase. In a representative volume element of soil, the
respective volume fractions of the fluid and solid grain
phases are denoted by »* and #°. Accordingly, macrosco-
picmass densities of the fluid and solid phases are denoted
by p”and p°*, and are related to the intrinsic average micro
densities as follows

p“=n"p, p°=n’p, 1)

The continuum mechanics sign convention is used in this
work and so stresses and strains are positive in tension and
negative in compression. Fluid pressures, however, are
taken as positive in compression. With this sign convention,
the balance of [inear momentum equations for the fluid and

solid phases can be expressed in general form as
v o'+ p°=p"(a"—b) 2)

where  3” is a momentum supply to the « ™ constituent

from the rest of the mixture due to interaction effects, and 5
is a body force per unit mass. Momentum transfer between
the solid skeleton and the pore fluid is assumed to consist of

diffusive and dilatational contributions as follows
p=—p'=—¢&- ('~ v")—p,vn" 3)

where ¢ is the soils' resistivity tensor which is merely the
inverse of its symmetric, positive definite permeability
tensor. In general momentum balance equations (2), the

partial stress tensor ¢” for the pore fluid is simply
Gw: nwau;:—nwpwl (4)

where p,, represents an average pore fluid pressure on the

microscale, and 1 is the identity tensor. In a similar fashion,

the mathematical expression for the partial stress tensor of

the solid phase ¢° is
o= n'o, )

where g, represents an average solid stress state in the soil
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Fig.1. Total and effective stresses in porous medium

on the microscale. The partial solid stress ¢° is not to be
confused with Terzaghi's effective stress ¢ (Terzaghi, 1927),
although the relationship between the two is straightforward
for the most soil. For example, the total average stress on a
planar segment passing through a sequence of vanishingly

small grain-to-grain contact areas can be written as
o=0c+06"=d —p,l (6)

Figure 1 shows the total and effective stresses in the porous
media.

When these notations mentioned above are employed in
equation (2), and convective inertial term are neglected and
under quasi-static conditions then specific linear momentum

equations for both the skeleton and the pore fluid reduced to

v (o —np)—&- (= v)+p°b=0 @)
—v(n“p)+ & (= v+ 0 b=0 (®)

2.2 Finite Element Formulation

In the following, the response of soils subjected to
gravitational loading will be treated as general materially
nonlinear parabolic initial boundary value problems in
which the governing field equations are those provided in
(7) and (8). With seepage and pore pressure effects included
in these field equations, the analysis problems to be solved
will feature physically based time dependence. Introducing
appropriate initial and boundary conditions, and usage of a
Galerkin weighted residual formulation in which the real
and variational kinematic fields are expanded in terms of the
same nodal basis functions, and discretization o_f the time
domain into a finite number of discrete time points, leads to

the following force balance equations at each unrestrained

node A in the mesh of the soil domain as here at the

(n+1) * time step:

(rA) n+l=(fA) nﬁ-l_(fi) n+1=0 (9)
where
(fa) IBX(G'“”Spwl) nt1 G82s
Al n+l— _fBZl‘(nwpwl) 1 dQs
- fNA 3 (' —2") a1 A8
(10
fNA & (V= 0") 441 dQ,
(fa) we1= fNA 0 by d, fNA?‘Snﬂth an

fNA wan+1 dsd, fNAZ ur):+1drh

where B 4 represents the nodal strain displacement matrix
and N, denotes the shape function for the A * node. The
quantity (#4) .+, represents the internal forces (both solid
and fluid)onnode A attime ¢, dueto stresses in the soil
mass, and (f3) , . represents the external forces applied to
node A attime ¢,,; due to body force and traction type
loads. As long as balance can be achieved between the inter-
nal soil stresses and external forces, then the slope will be
stable with respect to the applied loads, and the solutions to
equation (9) will exist. When this balance can no longer be
achieved, however, due to finite soil strength and increased
gravity loading, then the slope will become unstable and on
the verge of failure, since equilibrium solutions satisfying
equation (9) will not exist. In general equation (9) represents
a set of nonlinear algebraic equations which must be solved

in an iterative fashion for the nodal velocities v ,,, , at each

time step. To obtain updated nodal displacements #,,,,a

generalized mid-point rule algorithm is used as
Uy 1= Uyt (1= 7280, v,+ XA 411 Ve (12)

where y=[0, 1] is a constant integration parameter whose
value is chosen as unity in the computations presented
herein.

The system of global FEM equilibrium equations to be

solved at some time ¢,,,=[0, c0) of the problem has the

abbreviated form
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7’n+1(1/'n+1)=0 (13)

Table 1 shows the algorithm sequence to be employed in
finding the equilibrium velocity at the (#+ 1) * time step.

In Table 1, K is the global tangent stiffness matrix and §,
is the line search parameter chosen to satisfy the standard
line search criterion. In the linear solving phase represented
by equation (14), K =~% can be updated each iteration
(pure Newton) or updated only periodically(modified

Newton).

2.3 Elastic Consolidation Problem of Porous
Medium

When the soil mass is subjected to a stress increase, the
pore water pressure is suddenly increased. The excess pore
water pressure generated due to loading gradually dissipates
over a long period of time (that is, the consolidation). In
order to simulate the one-dimensional consolidation
behavior, an uniform strip load p= 1000N/m® over the
entire top surface was applied at time ¢=0(, then held
constant. Figure 2-a) shows the problem description for one-
dimensional porous medium of elastic surface. The total
initial height H=8m and two columns of 16 elements are

used. Each element has a side length of 1m; Young's

Table 1. Global Newton solution algorithm for (x-+1) * time step

modulus E=1.0x10"N/m®; Poisson's ratio v=0.0;

coefficient of consolidation ¢, = 1.0m? /s; the solid density
0°= 2.0 % 10%g/ m®; the fluid density o*=1.0x10%kg/m>;
permeability 2= 9.81x 10 ~*m/s; porosity #*=0.3; bulk
modulus of fluid A*=2.0x 10°N/?. The same quadrila-

teral element were used with four nodes interpolating the
displacements field for both solid and fluid. Standard
Gaussian quadrature rules were employed in the numerical
integration. For the fluid phase the reduced quadrature was
used using a B procedure. The analytical solution for pore
water pressure is available for this problem (Das, 1994). A
plot of # versus ¢ is shown in Figure 2-b). Excellent
agreement between the numerical and analytical results can

be observed.

3. Slope Stability Analysis

3.1 The Limit Strength Analysis Problem

In the proposed analysis method, the time dependent
gravitational acceleration vector is prescribed linearly in

time by the relation

8D = & puscline * t (18)

where gy 18 @ prescribed gravity vector specifying the

Predictor Phase
k=0
U(nk):l 17n+1=0
u b=yt (L= (0D 41) v,
form » £+1( v frH)
Multiple Corrector Phase
while ( {[# ..l > RTOL )
Koy=—r f;ﬂ
Py= a, 8,
v :ill‘—_ v ﬁ+1+ D
uttli=uto+r20 4104
form » £%i( 0 £3Y)
k=k+1

end-while

Go to next time/load step

: iteration counter initialization

: displacement predictor

: initial force balance residual

: linear solving phase for &, (14)
: line search to find o, (15)
: velocity update (16)
: displacement update 17

: residual update

: counter update
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Fig.2. One-dimensional consolidation geometry and pore pressure at depth 1.5m beneath the load

direction and reference magnitude, and ¢ is a parametric
time variable which is assumed to take a value of zero at the
inception of the analysis problem. By prescribing the
applied gravitational acceleration vector g(# in this
manner, the limit analysis problem reduces simply to finding
the largest time ¢= ¢, for which a global equilibrium
solution of Equation (14) exists, and the limiting gravita-

tional acceleration on the system is then merely
& tim = & tasetine * ¢ lim (19)

In accordance with the fact that the gravitational loading on
slopes is the active agent which induces failure, the proposed

new gravity-based factor of safety against failure is simply

(FS) pgp=—2m (0)

in which g ..., is an appropriate and representative actual
gravitational acceleration for the slope being analyzed
(i.e. 2 aornar=9.81m s . In general, the higher the
computed factor of safety, the more stable a slope is against
failure, with values less than unity indicating that a given

slope is unstable.

3.2 A Smooth 3-Surface Cap Model

While the proposed slope stability analysis methods

described above can be applied with a wide variety of soil
plasticity models, they will generally converge more rapidly
and produce more meaningful results when used with
realistic soil models that feature continuous and smoothly
differentiable rate constitutive equations. To efficiently and
realistically model coupling between tensile, compressive,
and shearing modes of ductile soil plasticity, a smooth,
3-surface cap model (Figure 3) is employed in the
calculations that follow in the next section. The model
employed here is a smooth variation of the non-smooth cap
model originaily proposed by DiMaggio and Sandler(1971)
and developed for FEM implementation by Simo et
al(1988). The primary advantage of the smooth cap model is
its continuous differentiability which leads to good
convergence behavior in nonlinear limit state FEM
computations. In this section, the basic constitutive
equations for this relatively simple soil model are briefly
discussed.

Utilizing the assumption of small deformations, the strain

tensor admits the additive elastic-plastic decomposition
e= g+ g? @n

where &, e¢, &? are, respectively, the total, elastic, and
plastic strain tensors. The small deformation incremental
stress response of the soil is assumed to be related to the

strain response by
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Fig.3. Three surface cap plasticity model

o=Ci(e— e?) (22)

where C is a forth order isotropic tensor of elastic moduli
C=K1®1+2u I, inwhich K is the bulk modulus of
the soil and  is the shear modulus.
In stress space, the elastic domain is bounded by three
distinct but smoothly intersecting yield surfaces. as shown

in Figure 3. The mathematical forms are

Al =11 SlI=Fo(l) < 0 (23)
filo, )=l SI*—FL;,x) <0 (24)
A=l SI*—F(I}) <0 (25)

where: S is the deviatoric stress tensor and  |]S))2 = —%— Jos
I,=tr{0) is the first invariant of the stress tensor and x is an

internal variable governing the location of the compressive

cap surface and the functional forms of F, F,, F, are

simply
Fl)=a—A(1—exp[B81,]) (26)
a2
Fh,»=Fo-[E%] @7)
F{L)=T'-I° (28)

where the following are material model constants:
a=0 , A=0 , f=0and R>0.

The yield surface ;=0 and f;=0 depend only on the
stress invariant 7, and ||s|} and thus remain fixed in stress
space. In the function F,the constants 8 (=A3) and ¢ are
related to the Mohr-Coulomb angle of friction ¢ and
cohesion ¢ respectively. Approximate translations have

been provided as for example in Chen and Saleeb(1982) as
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g V2c
(1+4/3tan’g) 12
_ V2tang
and = atan ) 2 29)

The aspect ratio of the elliptical compression cap is provided
by the dimensionless constant R. The cap is permitted to
translate along the 7, axis, and in particular moves to the
right ( x> 0) during plastic dilatation of the medium, and to
the left ( x<0) during plastic compaction.

The hardening law for this model derives from that the
volumetric crush curve is assumed to be an exponential of

the form
eh=— W {1 —exp[ DX(x)]} (30)

Differentiating equation with respect to » allows us to

obtain a variable tangent hardening modulus as follows

oy db _ exp(—DX)
W= =" ypx @D
where X(x)=x— RF {x) and W, D are material cons-
tants. This nonlinear hardening modulus %’(x) is used to
provide a nonlinear incremental hardening law governing

movement of the cap parameter:

x=k(x) tr(e? (32)

The flow rule for this model is associated, and since
multiple surfaces are potentially active at any given instant,
it takes the form:

oo 22

4. Example of Cubzac-les-Point Embankment

This embankment was built for experimental purpose at
Cubzac-les-Point, France in 1971. The test embankment
program included the construction of the embankment up to
failure and calculation of the factor of safety. In 1982, Pilot
et al.(1982) analyzed Cubzac embankment by both effective
and total stress analyses using simplified Bishop's method.

In their analysis, the foundation consisted of a soft silty clay
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Fig.4. Cubzac Embankment with failure mechanism and
factor of safety

having an approximate thickness of 9m, The effective shear
strength parameters measured by triaxial tests were
c'=10kPa and ¢'=24°~28°. The water table was taken to
coincide with the ground level. The embankment material is
clean gravel with in situ density of 21.0&N/#?; its shear
strength parameters were estimatedtobe ¢ = () and ¢'=35°.
The embankment was constructed in approxi- mately 10 days
and the failure occurred when the embankment reached a
height of 4.5m. Figure 4 shows the test embankment,
material properties and the estimated failure surface by Pilot
et al along the computed FS of 1.24. For a more detailed
description of the embankment, refer to Pilot et al.

The foundation was modeled with clayey soil which has
the same thickness and the water table is assumed with the
ground surface of the foundation. It also assumed that the
foundation is normally consolidated. To simulate the normal
consolidation condition, standard gravitational loading was
first applied to the foundation until it reach an equilibrium
state. The shear strength parameters of the clay were
computed by the equation (29). The sand properties Aand g
were chosen from Desai's(1981) published data. The

compressibility parameters of clayey soil were estimated

Table 2. Material parameters used for the embankment test
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Fig.5. Computed failure mechanism and factor of
safety

from those used by Haung and Chen(1990) for Boston Blue
Clay. The foundation and embankment material properties
are summarized in Table 2. Construction was simulated by
gradually increasing gravity loading on the embankment
soil until critical failure mechanisms developed. During this
time gravity loading on the base soil was held constant. The
computed factor of safety and failure mechanism are shown
in Figure 5. It should be noted that the computed factor of
safety for this embankment is 0.92, where Pilot et al predict
a value of 1.24 which would imply a stable embankment.

6. Conclusion

In the slope stability analysis presented, the gravity
increase method was applied to simulate the construction of
an embankment on a saturated soil deposit. To account for
the pore pressure effects, porous medium theory and an
elasto-plastic cap model was used. It was found that the
coupling between the soil skeletons' shear and compressi-
bility behaviors are very important factors in embankment
stabilities. On the demonstrated example of slope stability
analysis, an embankment corresponding to a field test

Material Parameter Values(Foundation) Value(Embankment)
Pa 1600 kg/m’ 2161 kg/m®
u 208.3 Mpa 1.154 Gpa
E 500 Mpa 3.0 Gpa
x, 0.0 KPa —10.0 MPa
a 12.3 kPa 10.0 Pa
2 400.6 KPa 153 kPa
B 5.010 7 Pa! 3.48x10 ° Pg !
D 3.2x1077 pPg ! 5.0x1077 Pg !
W 0.15 0.01
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experiment was modeled with the actual construction rate of
10 days. The proposed method is in general agreement with
the observed failure in the Cubzac-les-Point field test. The
perceived utility of the proposed method is that it facilitates
stability analysis of embankments as a function of const-
ruction rate by taking into account the in situ soil stresses,
the soil shear strength, and the transient effects of pore

pressure diffusion.
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