• 제목/요약/키워드: Porous body

검색결과 208건 처리시간 0.027초

금속매쉬에서 천연가스/공기 표면연소의 화염안정성에 관한 실험적 연구 (An Experimental Study on the Flame Stability of Natural Gas/Air Mixture on the Metal Mesh)

  • 유현석;이현찬;이중성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.49-53
    • /
    • 2001
  • A conventional flame type gas combustion major portion of heat is transferred to the body by convection due to small radiant ability of the gas flame. Increasing the radiation component of heat flux in the combustion zone allows to augment the efficiency of gas utilization. Such effect can be reached by using radiative gas burner applied to metal mesh combustion. Basically the gas radiant burner consists of metallic mesh of high heat resisting steels. In terms of this regards, we have made the burner consisted of metal mesh and measured the radiative flame stability of natural gas/air mixture on the metal mesh burner. The pressure loss through the metal mesh is defined by pressure-velocity slope. The more increased the pressure-velocity slope of the metal mesh is, the wider the stable zone of radiave flame on the metal mesh burner is. And the augmentation of mixture flowrate through the metal mesh make narrow the permissible range of equivalence ratio.

  • PDF

기상 환원제를 사용하는 선택적 환원촉매에서 유동혼합 개선에 관한 연구 (A STUDY ON FLOW MIXING IMPROVEMENT OF SELECTIVE CATALYTIC REDUCTION USING GASEOUS REDUCTANT)

  • 고상철;이범호;조승환;이상헌;홍성태;이대엽
    • 한국전산유체공학회지
    • /
    • 제15권1호
    • /
    • pp.56-63
    • /
    • 2010
  • Since emission regulations for vehicles have become more stringent, SCR technology has drawn a strong attention in order to reduce NOx emissions. Optimal design of a reductant injection nozzle and a multi-hole plate located between the cone and catalyst is critical in that the uniform distribution of reductant is necessary to maximize the NOx conversion efficiency and minimize the slip of reductant in SCR. In this work, an LPG fuel(C3H8 in vapor state) was used as a reductant for LPG vehicles. A Realizable k-$\varepsilon$ model is used for turbulence, and SCR body is defined as porous media with inertia and viscous resistances measured in this work. Effect of the number of nozzle holes on the flow mixing index was analyzed, which revealed that a four hole nozzle shows the best performance in terms of uniformity of flow. An installment of a multi-hole plate at the entrance of catalyst was evaluated with flow mixing index, uniformity of flow, and pressure drop. A multi-hole plate with gradual hole diameter change in three steps showed the best uniformity of flow within the conditions suggested in this work.

다공성 $CaCO_{3}$가 발포핵제로서 초미세 발포에 미치는 영향 (A Study on the Effect of Porous CaCO3 on Micro-cellular Plastics as an Additive for Nucleation)

  • 이동욱;차성운;윤재동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.991-996
    • /
    • 2004
  • Plastics are widely used in industry, because they are light, easily manufactured, and have high specific strength. And many researches to increase the strengths and to reduce the price are being conducted at now. One of these researches is concerning to additives. Foaming techniques are used to endow insulation properties, to improve specific strength, or reduce the material cost. Due to their unique properties, foamed plastics are applied to refrigerator, pipe, and insulators. Micro-cellular foaming is the latest foaming technique that was invented at 1980 in MIT. It is known that many tiny small cells are generated in the polymer matrices and micro-cellular foamed plastics show relatively high specific strength. We investigated the role of CaCO3 which is one of the most widely used additives in plastics industry as an additive for nucleation in view of cell morphology. CaCO3 used in this paper was treated to increase the dispersibility and to lower the density, so it has many pores at his body. Two experiments were conducted, in order to check the role of an additive for nucleation. One is compound-ability and the other one is role of nucleation agents.

  • PDF

A Numerical Model for the Freeze-Thaw Damages in Concrete Structures

  • Cho Tae-Jun
    • 콘크리트학회논문집
    • /
    • 제17권5호
    • /
    • pp.857-868
    • /
    • 2005
  • This paper deals with the accumulated damage in concrete structures due to the cyclic freeze-thaw as an environmental load. The cyclic ice body nucleation and growth processes in porous systems are affected by the thermo-physical and mass transport properties, and gradients of temperature and chemical potentials. Furthermore, the diffusivity of deicing chemicals shows significantly higher value under cyclic freeze-thaw conditions. Consequently, the disintegration of concrete structures is aggravated at marine environments, higher altitudes, and northern areas. However, the properties of cyclic freeze-thaw with crack growth and diffusion of chloride ion effects are hard to be identified in tests, and there has been no analytic model for the combined degradations. The main objective is to determine the driving force and evaluate the reduced strength and stiffness by freeze-thaw. For the development of computational model of those coupled deterioration, micro-pore structure characterization, pore pressure based on the thermodynamic equilibrium, time and temperature dependent super-cooling with or without deicing salts, nonlinear-fracture constitutive relation for the evaluation of internal damage, and the effect of entrained air pores (EA) has been modeled numerically. As a result, the amount of ice volume with temperature dependent surface tensions, freezing pressure and resulting deformations, and cycle and temperature dependent pore volume has been calculated and compared with available test results. The developed computational program can be combined with DuCOM, which can calculate the early aged strength, heat of hydration, micro-pore volume, shrinkage, transportation of free water in concrete. Therefore, the developed model can be applied to evaluate those various practical degradation cases as well.

굴 패각 분말로부터 벌크 세라믹 구조체 제조 (Consolidation to Bulk Ceramic Bodies from Oyster Shell Powder)

  • 조경식;이현권;민재홍
    • 한국분말재료학회지
    • /
    • 제23권3호
    • /
    • pp.221-227
    • /
    • 2016
  • Waste oyster shells create several serious problems; however, only some parts of them are being utilized currently. The ideal solution would be to convert the waste shells into a product that is both environmentally beneficial and economically viable. An experimental study is carried out to investigate the recycling possibilities for oyster shell waste. Bulk ceramic bodies are produced from the oyster shell powder in three sequential processes. First, the shell powder is calcined to form calcium oxide CaO, which is then slaked by a slaking reaction with water to produce calcium hydroxide $Ca(OH)_2$. Then, calcium hydroxide powder is formed by uniaxial pressing. Finally, the calcium hydroxide compact is reconverted to calcium carbonate via a carbonation reaction with carbon dioxide released from the shell powder bed during firing at $550^{\circ}C$. The bulk body obtained from waste oyster shells could be utilized as a marine structural porous material.

알진이 도포된 인공혈관의 물성 평가 (In vitro investigation of algin impregnated vascular graft)

  • 이진오;신병철;강길선;이해방
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1990년도 춘계학술대회
    • /
    • pp.9-12
    • /
    • 1990
  • He impregnated a highly porous, knitted polyester (Dacron) graft with a biodegradable nonproteinaceous material, algin. This new vascular graft is blood tight but still retains high porosity in the body. It does not need to be preclotted with blood before implantation and has good tissue ingrowth and biological healing properties due to the high porosity. The algin impregnated graft was investigated by "in vitro" examinations in this study. It was characterized by ESCA analysis, SEM observation, and measurements of water permeability, algin coating weight, mechanical properties and whole blood clotting time. The water permeability of the graft was reduced more than 99% by the algin impregnation treatment without changing any mechanical properties. "In vivo" examinations of the algin impregnated vascular graft are on progress.

  • PDF

다공성 매질의 형상 변화에 따른 접시형 고온 태양열 흡수기의 열성능 평가 (Heat Transfer Analysis of High Temperature Dish-type Solar Receiver with the Variation of Porous Material)

  • 이주한;서주현;오상준;이진규;조현석;서태범
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 추계학술발표대회 논문집
    • /
    • pp.238-244
    • /
    • 2008
  • A numerical and experimental studies are carried out to investigate the heat transfer characteristics of 5kWth dish-type solar air receiver. Measured solar radiation and temperatures at several different locations are used as boundary conditions for numerical simulation. Many parameters' effects (reflectivity of the reflector, the thermal conductivity of the receiver body, transmissivity of the quartz window, etc.) on the thermal performance are investigated. Discrete Transfer Method is used to calculate the radiation heat exchange in the receiver. A heat transfer model is developed and the rate of radiation, convection and conduction heat transfer are calculated. Using the numerical model, the heat transfer characteristics of volumetric air receiver for dish-type solar thermal systems are known and the thermal performance of the receiver can be estimated.

  • PDF

노년 여성을 위한 낙상충격 보호팬츠 디자인 프로토타입 (Prototype of Fall Impact Protective Pants for Elderly Women)

  • 박정현;이정란
    • 복식
    • /
    • 제66권4호
    • /
    • pp.45-60
    • /
    • 2016
  • Elderly women have a high risk of falling down in their daily lives. The purpose of this study is to develop protective pants for elderly women, which will mitigate the impact of falls, and play a major role in reducing injuries. The two types of design were proposed for development of protective pants by selecting pad insertion point and inserting lining for keeping pad in place through the checklist to investigate from the interviews with the medical workers and the investigation of the user requirement. Design A has protective pads in the hip, hip joint, and knee, while design B has protective pads in the hip and hip joint area. For the impact absorbing material, CR (chloroprene rubber) foam was selected for its flexibility, lightness, and impact absorbing capacity, and its pad shapes were designed to produce much flexibility in consideration of the activity and human body fitness of the wearers. Three kinds of pad types, which are the cut type, the porous type, and the honeycomb type, were proposed, and were manufactured to fit into the protective parts according to their design types.

Anti-osteoporotic effect of Salvia miltiorrhiza extracts

  • Chae Han Jung;Keum Kyung Soo
    • 동의생리병리학회지
    • /
    • 제17권5호
    • /
    • pp.1325-1329
    • /
    • 2003
  • The preventive effect of Salvia miltiorrhiza extracts (SMEs) on the progress of bone loss induced by ovariectomy (OVX) was studied in rats. We measured body weight and bone histomorphometry in sham, OVX or SMEs-administered OVX rats. From light microscopic analyses, a porous or erosive appearances were observed on the surface of trabecular bone of tibia in OVX rats, whereas those of the same bone in sham rats and in SMEs-administered rats were composed of fine particles. The trabecular bone area and trabecular thickness in OVX rats decreased by 50% from those in sham rats, these decreases were completely inhibited by administration of SMEs for 7 weeks. In this study, the mechanical strength in femur neck was significantly enhanced by the treatment of SMEs for 7 weeks. In OVX rats, free T3 was normal in all cases, whereas free T4 was significantly increased. Although there was no difference between OVX and SMEs-administered rats in T3 level, we have found significant difference between them in T4 level. These results strongly suggest that SMEs are effective in preventing the development of bone loss induced by OVX in rats.

Electrochemical Behaviors of PEO-treated Ti-6Al-4V Alloy in Solution Containing Zn and Si Ions

  • Hwang, In-Jo;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.160-160
    • /
    • 2017
  • Commercially pure titanium (Cp-Ti) and Ti alloys (typically Ti-6Al-4V) display excellent corrosion resistance and biocompatibility. Although the chemical composition and topography are considered important, the mechanical properties of the material and the loading conditions in the host have, conventionally. Ti and its alloys are not bioactive. Therefore, they do not chemically bond to the bone, whereas they physically bond with bone tissue. The electrochemical deposition process provides an effective surface for biocompatibility because large surface area can be served to cell proliferation. Plasma electrolyte oxidation (PEO) enables control in the chemical composition, porous structure, and thickness of the TiO2 layer on Ti surface. Silicon (Si) in particular has been found to be essential for normal bone and cartilage growth and development. Zinc (Zn) plays very important roles in bone formation and immune system regulation, and is also the most abundant trace element in bone. The objective of this work was to study on electrochemical behaviors of PEO-treated Ti-6Al-4V Alloy in solution containing Zn and Si ions. The morphology, the chemical composition, and the microstructure analysis of the sample were examined using FE-SEM, EDS, and XRD. The potentiodynamic polarization and AC impedance tests for corrosion behaviors were carried out in 0.9% NaCl solution at similar body temperature using a potentiostat. The promising results successfully demonstrated the immense potential of Si/Zn-TiO2 coatings in dental and biomaterials applications.

  • PDF