• Title/Summary/Keyword: Porous alumina

Search Result 214, Processing Time 0.031 seconds

Fabrication of Nano Metal Compounds Using Porous Aluminum Oxide Films (기공성 알루미나 산화 피막을 이용한 나노 금속화합물의 제조)

  • Oh, Han-Jun;Jeong, Yong-Soo;Chi, Choong-Soo
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.5
    • /
    • pp.248-254
    • /
    • 2010
  • Porous $Al_2O_3$ film can be utilized as template for fabrication of nano-structured materials. Porous anodic alumina layer as template was prepared by anodization of aluminum in oxalic acid, and the pore diameter and barrier-type alumina layer can be controlled for proper anodizing parameter by widening process in $H_3PO_4$ solution. The $SiO_2$ nanodot and Ni nanowire was fabricated using anodic alumina template and their characteristics were investigated using SEM and TEM with EDS. Especially the growth mechanism of $SiO_2$ nanodot in alumina membrane compared with thinning of the alumina barrier layer during anodization was also investigated.

Basic Experimental Investigations to UV Laser Micro-Machining of Nano-Porous Alumina Ceramic Material (나노 다공 구조를 가진 알루미나 재료의 UV 레이저 미세가공에 관한 실험적 기초 연구)

  • Shin, Bo-Sung;Lee, Jung-Han
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.62-67
    • /
    • 2012
  • Recently UV laser is widely used to process micro parts using various materials such as polymers, metals and ceramics because it has a very high intensity at the focused spot area. It is generally known that there are still some difficulties for alumina($Al_2O_3$) ceramics to directly make micro patterns like holes and lines on the surface of working material using 355nm UV laser because the alumina has a very low absorption coefficient at that wavelength. But nowadays new alumna with nano-porous holes is developed and applied to advanced micro functional parts of IT, BT and BT industries. In this paper, we are going to show the mechanism of photo-thermal ablation for nano-porous ceramics. Inside hole there is a lot of multiple reflections along the depth of hole. Experimentally we can find the micro hole drilling and micro grooving on the surface of nano-porous alumina.

Improvement of output coupling efficiency of organic light emitting device by using porous anodic alumina

  • Lee, Hyung-Sup;Choi, Ji-Young;Gao, Xinwei;Kim, Seong-Su;Lee, K.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.625-628
    • /
    • 2004
  • Porous anodic alumina(PAA) which has arrays of nano size holes, was incorporated into organic light emitting devices. Porous anodic alumina on glass scattered the light generated from emitting layer and was decreased the waveguiding modes within the glass. An increase in the device coupling-out factor for the scattering structure is demonstrated.

  • PDF

Fabrication Process of Lanthanide-Doped Xerogel/Porous Anodic Alumina Structures for an Image Formation

  • Smirnov, A.;Molchan, I.;Gaponenko, N.;Labunov, V.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.769-772
    • /
    • 2004
  • We report on the developed fabrication method of lanthanide-doped xerogel/porous anodic alumina structures for an image formation via the aluminum anodization, the sol-gel synthesis, and the photolithography process. The structures of europium- or terbium-doped xerogel/porous anodic alumina are also considered in view of application in electroluminescent devices.

  • PDF

Effect of Aluminum Purity on the Pore Formation of Porous Anodic Alumina

  • Kim, Byeol;Lee, Jin Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.349-352
    • /
    • 2014
  • Anodic alumina oxide (AAO), a self-ordered hexagonal array, has various applications in nanofabrication such as the fabrication of nanotemplates and other nanostructures. In order to obtain highly ordered porous alumina membranes, a two-step anodization or prepatterning of aluminum are mainly conducted with straight electric field. Electric field is the main driving force for pore growth during anodization. However, impurities in aluminum can disturb the direction of the electric field. To confirm this, we anodized two different aluminum foil samples with high purity (99.999%) and relatively low purity (99.8%), and compared the differences in the surface morphologies of the respective aluminum oxide membranes produced in different electric fields. Branched pores observed in porous alumina surface which was anodized in low-purity aluminum and the size; dimensions of the pores were found to be usually smaller than those obtained from high-purity aluminum. Moreover, anodization at high voltage proceeds to a significant level of conversion because of the high speed of the directional electric field. Consequently, anodic alumina membrane of a specific morphology, i.e., meshed pore, was produced.

A Study of Nanoscale Structure of Anodic Porous Alumina film (다공성 알루미나 박막의 나노 스케일 구조에 관한 연구)

  • 정경한;신훈규;권영수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.9
    • /
    • pp.801-806
    • /
    • 2003
  • In recent years, there has been large interest in the fabrication of the self organized nanoscale structures since not only their potential utilization in electronic, optoelectronic, and magnetic devices but also their fundamental interest such as uniformity and regularization. An attractive candidate of these materials is anodic porous alumina film(Al$_2$O$_3$) which is formed by the anodization of aluminum in an appropriate acid solution. In this study to fabricate the porous alumina film with very uniform and nearly parallel pores the anodization was carried out under constant voltage mode in 0.3M oxalic acid as an electrolyte. The hexagonally ordered arrays with a few $\mu\textrm{m}$ in size two-dimensional polycrystalline structure were obtained of which pore densities were 1.1${\times}$10$\^$10//$\textrm{cm}^2$.

Effect of Frit Content on Microstructure and Flexural Strength of Porous Frit-Bonded Al2O3 Ceramics (Frit 함량이 다공질 Frit-Bonded 알루미나 세라믹스의 미세조직과 꺾임강도에 미치는 영향)

  • Lim, Kwang-Young;Kim, Young-Wook;Song, In-Hyuck;Kim, Hai-Doo;Bae, Ji-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.529-533
    • /
    • 2010
  • Porous frit-bonded alumina ceramics were fabricated using alumina and frit as raw materials. The effects of frit content and sintering temperature on microstructure, porosity, and flexural strength were investigated at low temperature of $750{\sim}850^{\circ}C$. Increased addition of frit content or higher sintering temperature resulted in improved flexural strength of porous frit-bonded alumina ceramics. It was possible to produce frit-bonded alumina ceramics with porosities ranging from 35% to 40%. A maximum strength of 52MPa was obtained at a porosity of ~38% when 90 wt% alumina and 10 wt% frit powders were used.

Preparation of Porous Mullite Composites through Recycling of Coal Fly Ash (석탄회의 재활용을 통한 다공질 뮬라이트 복합체의 제조)

  • Kim, Won-Young;Ji, Hyung-Bin;Yang, Tae-Young;Yoon, Seog-Young;Park, Hong-Chae
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.151-156
    • /
    • 2010
  • Porous mullite/alumina composites have been fabricated by a freeze casting technique using TBA-based coal fly ash/alumina slurry. After sintering, unidirectional macropore channels aligned regularly along the TBA ice growth direction were developed; simultaneously, small sized micropores fromed in the outer walls of the pore channels. The physical and mechanical properties (e.g. porosity and compressive strength) of the sintered porous composites were roughly dependant of processing conditions, due to the complexity of the factors affecting them. However, with increasing solid loading and sintering temperature, the compressive strength generally increased and the porosity decreased. After sintering $1500^{\circ}C$ for 2 h, the porous specimen (porosity: 52.1%) showed a maximum compressive strength of 70.0 MPa.

Modified Shrinking Core Model for Atomic Layer Deposition of TiO2 on Porous Alumina with Ultrahigh Aspect Ratio

  • Park, Inhye;Leem, Jina;Lee, Hoo-Yong;Min, Yo-Sep
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.519-523
    • /
    • 2013
  • When atomic layer deposition (ALD) is performed on a porous material by using an organometallic precursor, minimum exposure time of the precursor for complete coverage becomes much longer since the ALD is limited by Knudsen diffusion in the pores. In the previous report by Min et al. (Ref. 23), shrinking core model (SCM) was proposed to predict the minimum exposure time of diethylzinc for ZnO ALD on a porous cylindrical alumina monolith. According to the SCM, the minimum exposure time of the precursor is influenced by volumetric density of adsorption sites, effective diffusion coefficient, precursor concentration in gas phase and size of the porous monolith. Here we modify the SCM in order to consider undesirable adsorption of byproduct molecules. $TiO_2$ ALD was performed on the cylindrical alumina monolith by using titanium tetrachloride ($TiCl_4$) and water. We observed that the byproduct (i.e., HCl) of $TiO_2$ ALD can chemically adsorb on adsorption sites, unlike the behavior of the byproduct (i.e., ethane) of ZnO ALD. Consequently, the minimum exposure time of $TiCl_4$ (~16 min) was significantly much shorter than that (~71 min) of DEZ. The predicted minimum exposure time by the modified SCM well agrees with the observed time. In addition, the modified SCM gives an effective diffusion coefficient of $TiCl_4$ of ${\sim}1.78{\times}10^{-2}\;cm^2/s$ in the porous alumina monolith.

De-NOx Characteristics for Cu-ZSM5/Alumina Beads Catalyst Filter in Urea-SCR System (Urea-SCR 시스템에서의 Cu-ZSM5/알루미나 비드 촉매필터의 De-NOx 특성)

  • Jang, Young-Sang;Shin, Young-Seop;Lee, Byoung-Jun;Park, Jai-Koo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.60-67
    • /
    • 2008
  • The catalytic filter of Cu-ZSM5/alumina beads was considered to reduce NOx in the urea SCR system. Catalytic support of porous alumina beads with mean pore size $130{\mu}m$ and porosity $75{\sim}83%$ were prepared using foaming and gel-casting method. The Cu-ZSM5 catalysts were coated on the supporting alumina beads using $Cu(NO_3)_2$ by ion exchange method. After a washcoating process was applied to coat 10w% Cu-ZSM5 on porous alumina bead, coating layer was estimated $20{\mu}m$ in thickness. The characterization and the feasibility as a catalytic supports were investigated. And the NOx conversion test in Cu-ZSM5/Alumina Beads filter system was conducted by using Urea as reductants under laboratory test. The NOx conversion was increased as size and porosity of beads and observed more than 95% excellent NOx conversion above $300^{\circ}C$.