• Title/Summary/Keyword: Porous Model

Search Result 749, Processing Time 0.031 seconds

Impedance Spectroscopic Properties of Mn Deposition on Al Oxide Layer (Al 양극산화피막에서 Mn전착에 관한 임피던스 연구)

  • Oh, Han Jun;Jang, Kyung Wook;Chi, Choong Soo
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.1
    • /
    • pp.23-29
    • /
    • 1999
  • The Al oxide layer formed in 1M $H_2SO_4$ solution and the influence of applied frequency for electrodeposition of Mn on Al oxide layer were characterized using by impedance spectroscopy. Mn compounds were electrodeposited at the base of pores during deposition with applied low frequency voltage. For the Mn deposited oxide layer at 6OHz and 5Hz in 1 g/L $KMnO_4$ solution, in equivalent circuit for interpretation, the resistance ($R_2$) and capacitance ($C_2$) were considered to be due to deposition of Mn on base of pore. The electrochemical behavior of barrier layer and porous oxide layer on Al have been characterized by capacitance ($C_b$) and Young capacitance ($C_Y$) in equivalent circuit model.

  • PDF

Predicting Noise inside a Trimmed Cavity Due to Exterior Flow (외부 유동에 의한 흡차음재 공간내의 소음 예측)

  • Jeong, ChanHee;Ganty, Bastien;Choi, EuiSung;Cho, MunHwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.466-471
    • /
    • 2014
  • The interior vehicle noise due to the exterior aerodynamic field is an important topic in the acoustic design of a car. The air flow detached from the A-pillar and impacting the side windows are of particular interest as they are located close to the driver / passenger and provides a lower insulation index than the trimmed car body parts. This paper presents a numerical analysis method for a simplified vehicle model. The internal air cavity including trim component are included in the simulation. The car body includes the windshield and two side windows. The body is made of aluminum and trimmed with porous layers. The methodology proposed in this paper relies on two steps: the first step involves the computation of the exterior flow and turbulence induced non-linear acoustic field using PowerFlow. The second step consists in the computation of the vibro-acoustic transmission through the window using the finite element vibro-acoustic solver Actran. Additionally in order to validate the numerical process, an experimental set-up has been created based on the simplified vehicle. The vibration of the windshield and windows, the total wind noise level results and the relative contributions of the different windows are then presented and compared to measurements. The influence of the flow yaw angle (different wind orientation) is also assessed.

  • PDF

PERFORMANCE CHARACTERISTICS OF A PROTON EXCHANGE MEMBRANE FUEL CELL(PEMFC) WITH AN INTERDIGITATED FLOW CHANNEL

  • Lee, P.H.;Cho, S.A.;Han, S.S.;Hwang, S.S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.761-769
    • /
    • 2007
  • The configuration of the flow channel on a bipolar plate of a proton exchange membrane fuel cell(PEMFC) for efficient reactant supply has great influence on the performance of the fuel cell. Recent demand for higher energy density fuel cells requires an increase in current density at mid voltage range and a decrease in concentration overvoltage at high current density. Therefore, an interdigitated flow channel where mass transfer rate by convection through a gas diffusion layer is greater than the mass transfer by a diffusion mechanism through a gas diffusion layer was recently proposed. This study attempts to analyze the i-V performance, mass transfer and pressure drop in interdigitated flow channels by developing a fully three dimensional simulation model for PEMFC that can deal with anode and cathode flow together. The results indicate that the trade off between performance and pressure loss should be considered for efficient design of flow channels. Although the performance of the fuel cell with interdigitated flow is better than that with conventional flow channels due to a strong mass transfer rate by convection across a gas diffusion layer, there is also an increase in friction due to the strong convection through the porous diffusion layer accompanied by a larger pressure drop along the flow channel. It was evident that the proper selection of the ratio of channel and rib width under counter flow conditions in the fuel cell with interdigitated flow are necessary to optimize the interdigitated flow field design.

Modeling and validation of a parabolic solar collector with a heat pipe absorber

  • Ismail, Kamal A.R.;Zanardi, Mauricio A.;Lino, Fatima A.M.
    • Advances in Energy Research
    • /
    • v.4 no.4
    • /
    • pp.299-323
    • /
    • 2016
  • Cylindrical parabolic solar concentrators of small concentration ratio are attractive options for working temperatures around $120^{\circ}C$. The heat gained can be utilized in many applications such as air conditioning, space heating, heating water and many others. These collectors can be easily manufactured and do not need to track the sun continuously. Using a heat pipe as a solar absorber makes the system more compact and easy to install. This study is devoted to modeling a system of cylindrical parabolic solar concentrators of small concentration ratio (around 5) fitted with a heat pipe absorber with a porous wick. The heat pipe is surrounded by evacuated glass tube to reduce thermal losses from the heat pipe. The liquid and vapor flow equations, energy equation, the internal and external boundary conditions were taken into consideration. The system of equations was solved and the numerical results were validated against available experimental and numerical results. The validated heat pipe model was inserted in an evacuated transparent glass tube as the absorber of the cylindrical parabolic collector. A calculation procedure was developed for the system, a computer program was developed and tested and numerical simulations were realized for the whole system. An experimental solar collector of small concentration, fitted with evacuated tube heat pipe absorber was constructed and instrumented. Experiments were realized with the concentrator axis along the E-W direction. Results of the instantaneous efficiency and heat gain were compared with numerical simulations realized under the same conditions and reasonably good agreement was found.

Application of 3-D Numerical Wave Tank for Dynamic Analysis of Nonlinear Interaction between Tsunami and Vegetation (쓰나미-식생 비선형 상호작용의 동적해석을 위한 3차원 수치파동수조의 적용)

  • Lee, Woo-Dong;Hur, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.831-838
    • /
    • 2016
  • The disaster preventing system using vegetation has been growing in the field of coastal engineering in recent years. To analyze wave and flow fields under nonlinear interactions between tsunami and vegetation, the purpose of this study is to evaluate newly-developed 3-D numerical wave tank including energy dissipation by tsunami-vegetation interaction based on existing N-S solver with porous body model. Comparing numerical results using mean drag coefficient and dynamic drag coefficient due to Reynolds number to existing experimental results it is revealed that computed results considering the dynamic drag coefficient are in good agreement with the laboratory test results for time-domain waveform. In addition, the calculated transmission coefficients of solitary waves in various vegetation densities and incident wave heights are also in good agreement with the experimental values. This confirms the validity and effectiveness of the developed 3-D numerical wave tank with the fluid resistance by vegetation.

Numerical Study on the Phenomenon of Spontaneous Ignition of Coal Stockpile (저탄장 자연발화 현상의 수치해석적 연구)

  • Kim, Chul-Jin;Park, I-Sun;Sohn, Chae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.7
    • /
    • pp.721-727
    • /
    • 2010
  • The spontaneous ignition of coal stockpile causes serious safety and economic problems. Such spontaneous ignition occurs in coal stockpile when the rate of heat released by the oxidation of coal is greater than the rate of heat lost to the surroundings. In this study, a two-dimensional unsteady model is adopted for studying spontaneous ignition and the numerical results are compared with experimental results. The numerical results are in a good agreement with the experimental ones. Depending on the porosity, the internal maximum temperature, pressure, and oxygen mass fraction during spontaneous ignition are investigated. On the basis of the numerical results, the transient temperature variations for several shapes of coal stockpiles are analyzed. Further, the physical mechanisms of hot-spot formation and spontaneous ignition are analyzed.

Numerical Study on Heat Transfer Characteristics of Turbulent Flow in Transition Duct (안내덕트 내부 난류유동구조에 따른 열전달 특성변화 수치해석)

  • Yoo, Geun-Jong;Choi, Hoon-Ki;Choi, Kee-Lim
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.9
    • /
    • pp.923-932
    • /
    • 2011
  • Because of the instability of a flow pattern in the inlet transition square duct (hereinafter referred to as "transition duct") of a heat recovery steam generator (hereinafter referred to as "HRSG") in a combined cycle power plant, the Reynolds number in the first row of a tube bank is differs sharply from that in the sectional area of the transition duct. This causes differences in the heat flux in each tube in the tube bank. The computational fluid dynamics (CFD) predictions provide three-dimensional results for velocity, temperature, and other flow parameters over the entire domain of the duct and HRSG. A renormalization group theory (RNG) based k-${\epsilon}$�� turbulent model is used for obtaining the results cited in this study. A porous media option is used for modeling the tube banks and the number of transfer units method is used for determining the heat transfer characteristics. This study describes a comparison between the numerical simulation results and actual design output.

Three-Dimensional Poroelastic and Failure Analysis of Composites Using Multislice Finite Element Models (분층형 유한요소 모델을 이용한 복합재료의 삼차원 기공 탄성 및 파손 해석)

  • Yang, Dae Gyu;Lim, Soyoung;Shin, Eui Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.2
    • /
    • pp.92-98
    • /
    • 2017
  • Porosity in polymer matrix composites generated during pyrolysis process affect the thermomechanical behavior of the composites. In this paper, multislice finite element models for the porous composite materials are developed, and poroelastic and failure analysis for these models are performed. In order to investigate the three-dimensional effects, finite element meshes are modeled considering different porosity(up to 0.5) and the number of slices (up to five). As a result, effective Young's moduli and poroelastic parameters exhibit the maximum differences of 74.0% and 442.1% with respect to porosity respectively, and 98.7% and 37.2% with respect to the number of slices. First and last failure strengths are decreased 88.2% and 90.0% with respect to porosity respectively, and 53.8% and 171.8% with respect to the number of slices.

Improvement of Stream Water Quality by Applying Best Management Practice to a Watershed Using SWAT Model (SWAT 모형을 이용한 최적관리기법 적용에 따른 하천수질 개선연구)

  • Yu, Yung-Seak;Park, Jong-Yoon;Shin, Hyung-Jin;Kim, Saet-Byul;Cheng, Hyuk;Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.191-191
    • /
    • 2011
  • 우리나라의 수질 관리는 점오염원 관리에 집중되어 왔다. 수계의 수질이 크게 향상되지 않는 이유는 점오염원의 관리가 엄격히 수행되고 있는 가운데 비점오염원의 영향이 큰 것으로 판단되었다. 본 연구에서는 수문수질 모의가 가능한 SWAT (Soil and Water Assessment Tool) 모형을 이용하여, 비점오염원 저감을 위한 BMP (Best Management Practice) 시나리오를 작성하여 비점오염 부하량의 저감효과를 모의하였다. SWAT 모형의 적용성 평가를 위해 충주댐 유역 ($6,585.1km^2$)을 대상으로 민감도 분석을 통해 최적의 유출 및 유사관련 매개 변수를 선정하였으며, 1998년 부터 2003년까지의 기간 동안 일별 유출, 월별 수질자료에 대한 보정 및 검증을 실시하였다. 전체 17개 소유역에 대한 검보정에 의해 산정된 수질자료인 TN (Total Nitrogen), TP (Total Phosphorus) 그리고 sediment의 부하량을 파악하여 소유역별 TN, TP, Sediment 오염부하특성을 파악하였고, 이에 대하여 선정한 7개의 BMP 시나리오를 소유역의 오염 특성에 맞게 적용하였다. 선정한 BMP 시나리오로는 Streambank stabilization, Porous gully plugs, Recharge structures, Conservation tillage, Terrace, Contour farming 그리고 Manure incorporation이 있고 각 시나리오는 흐름에서의 침전물 감소, 단기간의 토양침식 저감, 지하수양의 증가, 경작지의 침식감소, 지표유출 저하, 흐름에서의 영양물질 감소를 목적으로 최적의 매개변수를 설정하였다. 이상의 결과를 종합적으로 고찰해 볼 때 SWAT 모형은 실측자료를 바탕으로 비점오염에 의한 하천수질 모의가 가능하며, 이 결과를 가지고 BMP시나리오를 적용하여 비점오염 저감에 따른 하천수질 개선을 기대할 수 있다.

  • PDF

Optimization of soaking in aqueous ammonia pretreatment of canola residues for sugar production (당 생산을 위한 카놀라 부산물의 암모니아 침지 전처리 공정의 최적화)

  • Yoo, Hah-Young;Kim, Sung Bong;Lee, Sang Jun;Lee, Ja Hyun;Suh, Young Joon;Kim, Seung Wook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.114.1-114.1
    • /
    • 2011
  • Bioenergy production from lignocellulosic biomass and agriculture wastes have been attracted because of its sustainable and non-edible source. Especially, canola is considered as one of the best feedstock for renewable fuel production. Oil extracted canola and its agriculture residues are reuseable for bioethanol production. However, a pretreatment step is required before enzymatic hydrolysis to disrupt recalcitrant lignocellulosic matrix. To increase the sugar conversion, more efficient pretreatment process was necessary for removal of saccharification barriers such as lignin. Alkaline pretreatment makes the lignocellulose swollen through solvation and induces more porous structure for enzyme access. In our previous work, aqueous ammonia (1~20%) was utilized for alkaline reagent to increase the crystallinity of canola residues pretreatment. In this study, significant factors for efficient soaking in aqueous ammonia pretreatment on canola residues was optimized by using the response surface method (RSM). Based on the fundamental experiments, the real values of factors at the center (0) were determined as follows; $70^{\circ}C$ of temperature, 17.5% of ammonia concentration and 18 h of reaction time in the experiment design using central composition design (CCD). A statistical model predicted that the highest removal yield of lignin was 54% at the following optimized reaction conditions: $72.68^{\circ}C$ of temperature, 18.30% of ammonia concentration and 18.30 h of reaction time. Finally, maximum theoretical yields of soaking in aqueous ammonia pretreatment were 42.23% of glucose and 22.68% of xylose.

  • PDF