DOI QR코드

DOI QR Code

Numerical Study on Heat Transfer Characteristics of Turbulent Flow in Transition Duct

안내덕트 내부 난류유동구조에 따른 열전달 특성변화 수치해석

  • Yoo, Geun-Jong (Dept. of Mechanical Design & Manufacturing Engineering, Changwon Nat'l Univ.) ;
  • Choi, Hoon-Ki (Dept. of Mechanical Design & Manufacturing Engineering, Changwon Nat'l Univ.) ;
  • Choi, Kee-Lim (Dept. of Mechanical Design & Manufacturing Engineering, Changwon Nat'l Univ.)
  • 유근종 (창원대학교 기계설계공학과) ;
  • 최훈기 (창원대학교 기계설계공학과) ;
  • 최기림 (창원대학교 기계설계공학과)
  • Received : 2011.05.11
  • Accepted : 2011.07.19
  • Published : 2011.09.01

Abstract

Because of the instability of a flow pattern in the inlet transition square duct (hereinafter referred to as "transition duct") of a heat recovery steam generator (hereinafter referred to as "HRSG") in a combined cycle power plant, the Reynolds number in the first row of a tube bank is differs sharply from that in the sectional area of the transition duct. This causes differences in the heat flux in each tube in the tube bank. The computational fluid dynamics (CFD) predictions provide three-dimensional results for velocity, temperature, and other flow parameters over the entire domain of the duct and HRSG. A renormalization group theory (RNG) based k-${\epsilon}$�� turbulent model is used for obtaining the results cited in this study. A porous media option is used for modeling the tube banks and the number of transfer units method is used for determining the heat transfer characteristics. This study describes a comparison between the numerical simulation results and actual design output.

본 연구에서는 복합화력발전소 가스터빈 출구가스 안내덕트 내부의 가스유동장이 배열회수보일러 전열기구에 미치는 영향을 CFD기법을 이용하여 분석하였다. 안내덕트 내부 난류흐름의 경우, 유속의 편차가 크고 선회 효과 및 상승류 현상이 심한 특징을 가지고 있음으로 이와 같은 유동의 수치해석을 위해 2개 방정식 난류점성 모델 중 RNG k-${\epsilon}$ 모델을 사용하였으며 유동장의 영향을 가장 많이 받는 배열 회수보일러 최종과열기관의 열전달특성변화를 파악하기 위하여 NTU 방식을 이용한 수치해석결과와, 산업계에서 적용하는 설계기법에 의한 결과를 비교하였다.

Keywords

References

  1. Jackson, P. S., Moelling, D. S., Anderson, F. C. and Malloy, J. W., 2004, "Operating Experience of Large Reheat HRSGs in Merchant Service," Powergen International, Tetra Eng Inc.
  2. Habib, M. A. and Whitelaw, J. H., 1982, "The calculation of turbulent flow in wide angle diffusers," Numerical Heat Transfer, 5, pp.145-164. https://doi.org/10.1080/10407798208547011
  3. Yoo, G. J., Choi, H. K., Choi, K. L. and Shin, B. J., 2009, "A Numerical Study of the Turbulent Flow Characteristics in the Inlet Transition Square Duct Based on Roof Configuration," Trans. of the KSME (B), Vol. 33. No. 7, pp. 541-551. https://doi.org/10.3795/KSME-B.2009.33.7.541
  4. Lee, B. E., Kwon, S. B. and Lee, C. S., 2002, "On the Effect of Swirl Flow of Gas Turbine Exhaust Gas in an Inlet Duct of Heat Recovery Steam Generator," ASME, Volume 124, issue 3, pp. 496-502
  5. Choudhury, D., 1993, "Introduction to the Renormalization Group Method and Turbulence Modeling," Fluent Inc. Technical Memorandum TM-107.
  6. Fluent 6.3, User's Guide Volume 2.
  7. Perry, R. H., Gree, D. W. and Maloney, J. O., 1984, Perry's Chemical Engineer's Hand book
  8. Kern, D. Q., 1950, Process Heat Transfer, McGraw-Hill, New York, p. 512.
  9. ESCOA Fin tube manual, 1979, Published by ESCOA Corp. Tulsa.
  10. Dittus, P. W. and Boelter, L. M. K., 1930, "Heat Transfer in Automobile Radiators of the Tubular Type," Univ. Calif. Publ. Eng. Vol. 2, No. 13, Oct. 17, pp.443-461; Reprinted in Int. Commun., 1985, Heat Mass Transfer, Vol. 12, pp. 3-22.