• Title/Summary/Keyword: Porous Model

Search Result 742, Processing Time 0.028 seconds

Effective thermal conductivity model of porous polycrystalline UO2: A computational approach

  • Yoon, Bohyun;Chang, Kunok
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1541-1548
    • /
    • 2022
  • The thermal conductivity of uranium oxide (UO2) containing pores and grain boundaries is investigated using continuum-level simulations based on the finite-difference method in two and three dimensions. Steady-state heat conduction is solved on microstructures generated from the phase-field model of the porous polycrystal to calculate the effective thermal conductivity of the domain. The effects of porosity, pore size, and grain size on the effective thermal conductivity of UO2 are quantified. Using simulation results, a new empirical model is developed to predict the effective thermal conductivity of porous polycrystalline UO2 fuel as a function of porosity and grain size.

A Detailed Examination of Various Porous Media Flow Models for Collection Efficiency and Pressure Drop of Diesel Particulate Filter (DPF의 PM 포집효율 예측을 위한 다양한 다공성 매질 유동장 모델 해석)

  • Jung, Seung-Chai;Yoon, Woong-Sup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.78-88
    • /
    • 2007
  • In the present study a detailed examination of various porous media models for predicting filtration efficiency and pressure drop of diesel particulate filter (DPF), such as sphere-in-cell and constricted tube models, are attempted. In order for demonstrating their validities of correct estimation on permeability, geometry of property configurations common in commercial cordierite DPFs are correlated to the porous media flow models, and validations of predicted filtration efficiencies due to the use of different unit collectors are made with experiments. The result shows that the porosity, pore size and permeability of cordierite DPF can be successfully correlated by Kuwabara flow field with correction factor of 0.6. The unit collector efficiency predicted by sphere-in-cell model agrees very well with measurements in accumulation mode, whereas that by constricted tube model with significant prediction error.

Porous Media Modelling and Verification of Thermal Analysis for Inlet and Outlet Ducts of Spent Fuel Storage Cask (사용후핵연료 저장용기 유로입출구의 다공성매질 모델링 및 열해석 검증평가)

  • Lee, Ju-Chan;Bang, Kyung-Sik;Choi, Woo-Seok;Seo, Ki-Seog;Ko, Sungho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.223-232
    • /
    • 2018
  • Bird screen meshes are installed at the air inlet and outlet ducts of spent fuel storage casks to inhibit the intrusion of debris from the external environment. The presence of these screens introduces an additional resistance to air flow through the ducts. In this study, a porous media model was developed to simplify the bird screen meshes. CFD analyses were used to derive and verify the flow resistance factors for the porous media model. Thermal analyses were carried out for concrete storage cask using the porous media model. Thermal tests were performed for concrete casks with bird screen meshes. The measured temperatures were compared with the analysis results for the porous model. The analysis results agreed well with the test results. The analysis temperatures were slightly higher than the test temperatures. Therefore, the reliability and conservatism of the analysis results for the porous model have been verified.

Thermal Flow Analysis of an Engine Room using a Porous Media Model for Imitating Flow Rate Reduction at Outlet of Industrial Machines (다공성 매질 모델 기반 출구유량 감소 모사 기법을 이용한 산업기계용 엔진룸 열유동해석)

  • Choi, Yo Han;Yoo, Il Hoon;Lee, Chul-Hee
    • Journal of Drive and Control
    • /
    • v.19 no.1
    • /
    • pp.62-68
    • /
    • 2022
  • Considering the characteristics of industrial machines that lack vehicle-induced wind, forced convection by a cooling fan is mostly required. Therefore, numerical analysis of an engine room is usually performed to examine the cooling performance in the room. However, most engine rooms consist of a number of parts and components at specific positions, leading to high costs for numerical modeling and simulation. In this paper, a new methodology for three-dimensional computer-assisted design simplification was proposed, especially for the pile of components and parts at the engine room outlet. A porous media model and regression analysis were used to derive a meta-model for imitating the flow rate reduction at the outlet by the pile. The results showed that the fitted model was reasonable considering the coefficient of determination. The final numerical model of the engine room was then used to simulate the velocity distribution by changing the mass flow rate at the outlet. The results showed that both velocity distributions were significantly changed in each case and the meta-model was valid in imitating the flow rate reduction by some piles of components and parts.

HEAT TRANSFER ANALYSIS OF CONCRETE STORAGE CASK DEPENDING ON POROUS MEDIA REGION OF SPENT FUEL ASSEMBLY (사용후핵연료 집합체의 다공성 매질 적용영역에 따른 콘크리트 저장용기 열전달 해석)

  • Kim, H.J.;Kang, G.U.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.33-39
    • /
    • 2016
  • Generally, thermal analysis of spent fuel storage cask has been conducted using the porous media and effective thermal conductivity model to simplify the structural complexity of spent fuel assemblies. As the fuel assembly is composed of two regions; active fuel region corresponding to UO2 pellets and unactive fuel region corresponding to the top and bottom nozzle, the heat transfer performance can be influenced depending on porous media application at these regions. In this study, numerical analysis on concrete storage cask of spent fuel was performed to investigate heat transfer effects for two cases; one was porous media application only to active fuel region(case 1) and the other one was porous media to whole length of fuel assembly(case 2). Using computational fluid dynamics code, the three dimensional, 1/4 symmetry model was constructed. For two cases, maximum temperatures for each component were evaluated below the allowable limits. For the case 1, maximum temperatures for fuel cladding, neutron absorber and baskets inside the canister were slightly higher than those for the case 2. In particular, even though the helium flows with low velocity due to buoyant forces occurred at the top and bottom of unactive fuel region, treating only active fuel region as the porous media was ineffective in respect of the heat removal performance of concrete storage cask, implying a conservative result.

On the elastic stability and free vibration responses of functionally graded porous beams resting on Winkler-Pasternak foundations via finite element computation

  • Zakaria Belabed;Abdelouahed Tounsi;Mohammed A. Al-Osta;Abdeldjebbar Tounsi;Hoang-Le Minh
    • Geomechanics and Engineering
    • /
    • v.36 no.2
    • /
    • pp.183-204
    • /
    • 2024
  • In current investigation, a novel beam finite element model is formulated to analyze the buckling and free vibration responses of functionally graded porous beams resting on Winkler-Pasternak elastic foundations. The novelty lies in the formulation of a simplified finite element model with only three degrees of freedom per node, integrating both C0 and C1 continuity requirements according to Lagrange and Hermite interpolations, respectively, in isoparametric coordinate while emphasizing the impact of z-coordinate-dependent porosity on vibration and buckling responses. The proposed model has been validated and demonstrating high accuracy when compared to previously published solutions. A detailed parametric examination is performed, highlighting the influence of porosity distribution, foundation parameters, slenderness ratio, and boundary conditions. Unlike existing numerical techniques, the proposed element achieves a high rate of convergence with reduced computational complexity. Additionally, the model's adaptability to various mechanical problems and structural geometries is showcased through the numerical evaluation of elastic foundations, with results in strong agreement with the theoretical formulation. In light of the findings, porosity significantly affects the mechanical integrity of FGP beams on elastic foundations, with the advanced beam element offering a stable, efficient model for future research and this in-depth investigation enriches porous structure simulations in a field with limited current research, necessitating additional exploration and investigation.

Theoretical Formulation of Porous Medium Behavior Depending on Degree of Saturation (포화도에 따른 다공질 매체 거동의 이론적 정식화)

  • Park, Tae Hyo;Jung, So Chan;Kim, Won Cheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.3
    • /
    • pp.81-88
    • /
    • 2001
  • The behavior of porous medium is modeled by linear thermoporoelastic behavior, linear poroviscoelastic behavior, poroplastic behavior, and poroviscoplastic behavior, etc. The behavior has, in general, a complicated aspect which makes a mechanical description of the problem with time. Constitutive modeling for deformation behavior of porous medium with coupling effects is needed since there is interaction between the constituents in pores with a relative velocity to each other. In this work, it is explained 3-dimensional behavior depending on degree of saturation for porous medium composed of homogeneous, isotropic materials. It is obtained the governing equations based on continuum porous mechanics. In addition, it is developed constitutive model which can be understood of behavior for porous medium which can be understood, analysed behavior of porous medium. It can be accomplished exact analysis and prediction of behavior in porous medium. The behavior for porous medium is analysed exactly, and the prediction of deformation behavior is accomplished. Consequently, it will be basis to analyze 3-dimensional behavior in municipal solid waste landfill, and the practical using of porous medium ground which are composed of nonhomogeneous, anisotropic materials can be done widely.

  • PDF

Control of Plume Interference Using a Porous Extension (다공확장벽을 이용한 플룸간섭의 제어)

  • Young-Ki Lee;Heuy-Dong Kim
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.95-98
    • /
    • 2003
  • The physics of the plume-induced shock and separation particulary at a high plume to exit pressure ratio and supersonic speeds up to Mach 3.0 with aid without a passive control method, porous extension, were studied using computational techniques. Mass-averaged Navier-Stokes equations with the RNG k-$\varepsilon$ turbulence model were solved using a fully implicit finite volume scheme and a 4-stage Runge-Kutta method. The courol methodology for plume-afterbody interactions is to use a perforated wall attached at either the nozzle exit or the edge of the missile base. The Effect of porous wall length on plume interference is also investigated. The computational results show the main effect of the porous extension on plume-afterbody interactions is to in the plume from strongly underexpanding during a change in flight conditions. With control, a change in porous extension length has no significant effect on plume interference.

  • PDF

Structural and Flow Analysis for Designing Air Plate of a Fuel Cell (구조 해석과 유동 해석을 통한 연료전지 공기판 설계)

  • Park, Jung-Sun;Yang, Ji-Hae;Lee, Won-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.585-590
    • /
    • 2003
  • The distributions of mass flow rate and pressure are major factors to deside the performance of a proton exchange membrane fuel cell (PEMFC). These factors are affected by channel configuration of air plate. In this paper. structural analysis is performed to investigate deformation of porous media. Two kind of models are suggest for flow analyses. Deformed porous media and undeformed porous media are considered for air plate model. The Numerical flow analysis results with deformed porous media and undeformed porous media had some discrepancy in pressure distribution. The pressure and velocity in a working condition are numerically calculated to predict the performance of the air plates. Distributions of the parameters in the PEMFC are analyzed numerically under steady-state conditions.

  • PDF

Computer Simulation for Microstructure Development in Porous Sintered Compacts (다공질 소결체의 조직형성에 관한 컴퓨터 시뮬레이션)

  • Shin, Soon-Ki;Matsubara, Hideaki
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.4 s.287
    • /
    • pp.213-219
    • /
    • 2006
  • A Monte Carlo simulation based on Potts model in a three dimensional lattice was studied to analyze and design microstructures in porous sintered compacts such as porosity, pore size, grain (particle) size and contiguity of grains. The effect of surface energy of particles and the content of additional fine particles to coarse particles on microstructure development were examined to obtain fundamentals for material design in porous materials. It has been found that the larger surface energy enhances sintering (necking) of particles and increases contiguity and surface energy does not change pore size and grain size. The addition of fine particles also enhances sintering of particles and increases contiguity, but it has an effect on increment of pore size and grain size. Such a simulation technique can give us important information or wisdom for design of porous materials, e.g., material system with high surface energy and fine particle audition are available for higher strength and larger porosity in porous sintered compacts with applications in an automobile.